Axons are typically viewed as an all-or-none transmission line between the neuronal soma and presynaptic terminals. To test this assumption, we circumvented some of the limitations of classic techniques for studying unmyelinated fibers. We have refined recently developed extracellular single-axon recording techniques. We record extracellularlyfrom single fibers while simultaneously recording intracellularly from the soma of origin. We can perform these recordings under normal or seizure-promoting conditions. Preliminary experiments support the feasibility of performing axonal recording up to 800 uM away from the soma of origin in area CAS of hippocampus. Action potentials can be stimulated either orthodromically (intracellularly) from the natural site of initiation or can be stimulated antidromically from the focal extracellular recording electrode. We propose to use this technique to address fundamental unanswered questions regarding the basis for observations of axonal plasticity in small CMS unmyelinated fibers. We provide preliminary evidence that axons possess more dynamic signaling flexibility than has been assumed. We suggest that depression of axonal signaling during seizure events may actually be an endogenous mechanism for depressing seizure propagation. This mechanism could be exploited and amplified by future anti-convulsant strategies once the mechanisms are better understood. We also present evidence for considerable timing plasticity attributable to both initiation site plasticity and conduction velocity changes. We will use CAS region of hippocampus as an initial model system because of the well studied anatomical, physiological, and synaptic properties of these cells, and also because of the relevance to previous work on seizure mechanisms in this area. However, a great advantage of the technique is that it can be applied to many cell types. Therefore, we will explore modulation of axonal behavior in other cells of the hippocampus to address unresolved questions regarding axonal behavior and to test the overarching hypothesis that axons possess more computational power than previously assumed. Relevance: The research in this proposal will aid the understanding of the etiology and propagation of seizures. Our results will also lead to cellular insights into the mechanism of brain stimulation techniques currently used in the treatment of movement disorders and neuropsychiatric disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS054174-05
Application #
7799900
Study Section
Clinical Neuroplasticity and Neurotransmitters Study Section (CNNT)
Program Officer
Whittemore, Vicky R
Project Start
2006-07-01
Project End
2012-03-31
Budget Start
2010-04-01
Budget End
2012-03-31
Support Year
5
Fiscal Year
2010
Total Cost
$295,886
Indirect Cost
Name
Washington University
Department
Psychiatry
Type
Schools of Medicine
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Lyons-Warren, Ariel M; Kohashi, Tsunehiko; Mennerick, Steven et al. (2013) Retrograde fluorescent labeling allows for targeted extracellular single-unit recording from identified neurons in vivo. J Vis Exp :
Lyons-Warren, Ariel M; Kohashi, Tsunehiko; Mennerick, Steven et al. (2013) Detection of submillisecond spike timing differences based on delay-line anticoincidence detection. J Neurophysiol 110:2295-311
Wroge, Christine M; Hogins, Joshua; Eisenman, Larry et al. (2012) Synaptic NMDA receptors mediate hypoxic excitotoxic death. J Neurosci 32:6732-42
Crawford, Devon C; Jiang, Xiaoping; Taylor, Amanda et al. (2012) Astrocyte-derived thrombospondins mediate the development of hippocampal presynaptic plasticity in vitro. J Neurosci 32:13100-10
Chisari, Mariangela; Zorumski, Charles F; Mennerick, Steven (2012) Cross talk between synaptic receptors mediates NMDA-induced suppression of inhibition. J Neurophysiol 107:2532-40
Shu, Hong-Jin; Bracamontes, John; Taylor, Amanda et al. (2012) Characteristics of concatemeric GABA(A) receptors containing ýý4/ýý subunits expressed in Xenopus oocytes. Br J Pharmacol 165:2228-43
Chisari, M; Wu, K; Zorumski, C F et al. (2011) Hydrophobic anions potently and uncompetitively antagonize GABA(A) receptor function in the absence of a conventional binding site. Br J Pharmacol 164:667-80
Rojas, Patricio; Akrouh, Alejandro; Eisenman, Lawrence N et al. (2011) Differential effects of axon initial segment and somatodendritic GABAA receptors on excitability measures in rat dentate granule neurons. J Neurophysiol 105:366-79
Hogins, Joshua; Crawford, Devon C; Jiang, Xiaoping et al. (2011) Presynaptic silencing is an endogenous neuroprotectant during excitotoxic insults. Neurobiol Dis 43:516-25
Mennerick, Steven; Chisari, Mariangela; Shu, Hong-Jin et al. (2010) Diverse voltage-sensitive dyes modulate GABAA receptor function. J Neurosci 30:2871-9

Showing the most recent 10 out of 31 publications