The long-term objective of this project is improved evaluation of Traumatic Brain Injury (TBI) using advanced MR neuroimaging methods. TBI represents a major public health problem for which there are currently no objective measures that are able to quantify the severity of injury, or to indicate possible outcomes. Previous studies have shown that Magnetic Resonance Spectroscopy can detect widespread metabolic changes in the brain that correlate with the degree of injury, even in the absence of significant MRI findings. For mild TBI subjects, which represents the largest group of these patients and the most difficult to evaluate, these diffuse metabolic abnormalities may be small in magnitude, though widespread, while it is also known that some brain regions are more susceptible to injury and may have more focal abnormalities, particularly with more severe injury. Therefore, it is hypothesized that improved characterization of this type of brain injury will be obtained by using a) improved detection sensitivity and acquisition from a wide region of the brain, and b) analysis of both focal and diffuse multiparametric metabolic abnormalities, in comparison with normal values. This pilot study will use volumetric proton MR Spectroscopic Imaging (MRSI) at 3 Tesla using phased-array detection, for characterization of metabolic changes associated with mild and moderate closed-head TBI. Measurements will include N-Acetylaspartate and choline, metabolic markers known to be sensitive to neuronal dysfunction and membrane turnover. Results will be correlated with findings from structural MRI, initial clinical assessments, and outcome evaluations, including results of neuropsychological testing. MRSI processing methods will incorporate MRI information to enable metabolite analysis by brain region and tissue type, as well as voxel-based comparisons with normal values. Quantitative neuroimaging measures will be developed that will characterize: 1) which brain locations experience greatest MR-detected metabolic and structural changes; 2) the spatial extent and the degree of metabolic alteration; and 3) which clinical and MR imaging measures best correlate with clinical outcome at 6 months post injury. It is hypothesized that the improved sensitivity and spatial coverage of the spectroscopic measurement and analysis methods will enable improved characterization of mild and moderate injury, and that the metabolic neuroimaging methods will be more sensitive than MRI for evaluation of this brain injury. Relevance of this research: Improved imaging assessment of metabolic changes associated with diffuse brain injury will guide treatment and patient management decisions following brain trauma, as well as providing expectations for long-term consequences of the injury. ? ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
1R01NS055107-01
Application #
7087466
Study Section
Biomedical Imaging Technology Study Section (BMIT)
Program Officer
Hicks, Ramona R
Project Start
2006-06-01
Project End
2009-02-28
Budget Start
2006-06-01
Budget End
2007-02-28
Support Year
1
Fiscal Year
2006
Total Cost
$269,491
Indirect Cost
Name
University of Miami School of Medicine
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
052780918
City
Miami
State
FL
Country
United States
Zip Code
33146
Maudsley, Andrew A; Govind, Varan; Saigal, Gaurav et al. (2017) Longitudinal MR Spectroscopy Shows Altered Metabolism in Traumatic Brain Injury. J Neuroimaging 27:562-569
Maudsley, Andrew A; Goryawala, Mohammed Z; Sheriff, Sulaiman (2017) Effects of tissue susceptibility on brain temperature mapping. Neuroimage 146:1093-1101
Widerström-Noga, Eva; Govind, Varan; Adcock, James P et al. (2016) Subacute Pain after Traumatic Brain Injury Is Associated with Lower Insular N-Acetylaspartate Concentrations. J Neurotrauma 33:1380-9
Maudsley, Andrew A; Govind, Varan; Levin, Bonnie et al. (2015) Distributions of Magnetic Resonance Diffusion and Spectroscopy Measures with Traumatic Brain Injury. J Neurotrauma 32:1056-63
Sabati, Mohammad; Zhan, Jiping; Govind, Varan et al. (2014) Impact of reduced k-space acquisition on pathologic detectability for volumetric MR spectroscopic imaging. J Magn Reson Imaging 39:224-34
Maudsley, A A; Govind, V; Arheart, K L (2012) Associations of age, gender and body mass with 1H MR-observed brain metabolites and tissue distributions. NMR Biomed 25:580-93
Maudsley, Andrew A; Domenig, Claudia; Ramsay, R Eugene et al. (2010) Application of volumetric MR spectroscopic imaging for localization of neocortical epilepsy. Epilepsy Res 88:127-38
Govind, Varan; Gold, Stuart; Kaliannan, Krithica et al. (2010) Whole-brain proton MR spectroscopic imaging of mild-to-moderate traumatic brain injury and correlation with neuropsychological deficits. J Neurotrauma 27:483-96
Maudsley, A A; Domenig, C; Govind, V et al. (2009) Mapping of brain metabolite distributions by volumetric proton MR spectroscopic imaging (MRSI). Magn Reson Med 61:548-59