Notch signaling plays well described roles in developmental cell fate decisions, in the regulation of stem cell proliferation and in numerous diseases. However, Notch signaling is also critical for the function of adult neurons. Notch plays a role in memory retention in mice and Drosophila, yet the targets of Notch signaling in neurons are unclear. We have demonstrated that the C. elegans lin-12 Notch receptor acts in adult animals to modulate behavior. In the studies proposed here, we will identify the molecular pathways by which Notch signaling alters neuronal function and behavior using the powerful genetic techniques available in C. elegans. In a pilot screen, we identified five genes expressed in the nervous system that are likely direct targets of Notch. All five genes encode proteins that are likely critical for Notch signaling in vertebrate neurons as well. In this proposal, we address the mechanisms and pathways by which these Notch target genes act in the adult nervous system to regulate neuronal activity and behavior.

Public Health Relevance

Notch signaling is critical for normal function of the human nervous system. Mutations in Notch3 and Jagged1 cause CADASIL and Alagille syndromes, respectively. These are dominantly inherited disorders associated with stroke and dementia. Combined, their incidence is at least 1 in 50,000, although CADASIL is likely under-diagnosed. Recent evidence also suggests that Notch signaling is up-regulated in Down's syndrome patients. Interestingly, Notch and amyloid precursor proteins directly interact suggesting that Notch signaling may be important in the memory defects associated with Alzheimer's disease. There is no effective treatment for these disorders. Given the conservation across species of Notch regulatory mechanisms and targets, we anticipate that identifying the targets of Notch signaling in C. elegans will reveal critical targets of Notch modulation in humans that are relevant in both normal and pathological conditions.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS055813-03
Application #
7860665
Study Section
Neurogenesis and Cell Fate Study Section (NCF)
Program Officer
Riddle, Robert D
Project Start
2009-06-15
Project End
2014-05-31
Budget Start
2010-06-01
Budget End
2011-05-31
Support Year
3
Fiscal Year
2010
Total Cost
$315,667
Indirect Cost
Name
Brown University
Department
Neurosciences
Type
Schools of Medicine
DUNS #
001785542
City
Providence
State
RI
Country
United States
Zip Code
02912
Bennett, Heather L; Khoruzhik, Yulia; Hayden, Dustin et al. (2018) Normal sleep bouts are not essential for C. elegans survival and FoxO is important for compensatory changes in sleep. BMC Neurosci 19:10
Huang, Huiyan; Hayden, Dustin J; Zhu, Chen-Tseh et al. (2018) Gap Junctions and NCA Cation Channels Are Critical for Developmentally Timed Sleep and Arousal in Caenorhabditis elegans. Genetics 210:1369-1381
SorkaƧ, Altar; DiIorio, Michael A; O'Hern, Patrick J et al. (2018) LIN-12/Notch Regulates GABA Signaling at the Caenorhabditis elegans Neuromuscular Junction. G3 (Bethesda) 8:2825-2832
Huang, Huiyan; Zhu, Yong; Eliot, Melissa N et al. (2017) Combining Human Epigenetics and Sleep Studies in Caenorhabditis elegans: A Cross-Species Approach for Finding Conserved Genes Regulating Sleep. Sleep 40:
Huang, Huiyan; Zhu, Chen-Tseh; Skuja, Lukas L et al. (2017) Genome-Wide Screen for Genes Involved in Caenorhabditis elegans Developmentally Timed Sleep. G3 (Bethesda) 7:2907-2917
Huang, Huiyan; Singh, Komudi; Hart, Anne C (2017) Measuring Caenorhabditis elegans Sleep During the Transition to Adulthood Using a Microfluidics-based System. Bio Protoc 7:
Fry, Amanda L; Laboy, Jocelyn T; Huang, Huiyan et al. (2016) A Conserved GEF for Rho-Family GTPases Acts in an EGF Signaling Pathway to Promote Sleep-like Quiescence in Caenorhabditis elegans. Genetics 202:1153-66
Anderson, Edward N; Corkins, Mark E; Li, Jia-Cheng et al. (2016) C. elegans lifespan extension by osmotic stress requires FUdR, base excision repair, FOXO, and sirtuins. Mech Ageing Dev 154:30-42
Chalfie, Martin; Hart, Anne C; Rankin, Catharine H et al. (2014) Assaying mechanosensation. WormBook :
Singh, Komudi; Ju, Jennifer Y; Walsh, Melissa B et al. (2014) Deep conservation of genes required for both Drosphila melanogaster and Caenorhabditis elegans sleep includes a role for dopaminergic signaling. Sleep 37:1439-51

Showing the most recent 10 out of 15 publications