Mutations of regulatory genes in the developing central nervous system are frequently associated with human neurological diseases. Disorders in neuronal cell proliferation, migration, and lamination, in particular, lead to mental retardation and epilepsy. Our long-term goal is to study the molecular mechanisms that underlie cortical development and their related neurological disorders. Using positional cloning, we recently demonstrated that loss-of-function mutation in GPR56, an orphan G protein-coupled receptor (GPCR), causes a specific cortical malformation known as bilateral frontoparietal polymicrogyria (BFPP). Identification of GPR56 as a causative gene of BFPP leads to the specific hypothesis of this application that the signaling pathway of GPR56 is crucial in regulating cortical development. Our hypothesis is based on published and preliminary observations that: (1) mutations in GPR56 cause a specific human cortical malformation, BFPP;(2) mouse Gpr56 mRNA is expressed mainly in neuronal progenitor cells, suggesting that it may play an important role in cortical development and patterning;and (3) Gpr56 knockout causes cortical dysplasia in mice;(4) GPR56 functions synergistically with 13 integrin and Gpr56/13 integrin double knockout mice have more severe and extensive cortical dysplasia. Based on these observations, the experimental focus of this proposal is on the functional analysis of GPR56 in mouse models.
The specific aims are to: (1) delineate the pathogenesis of BFPP;(2) investigate the potential interaction of GPR56 and 13 integrin;and (3) study GPR56 protein trafficking. Abnormal brain development frequently causes human neurological disorders such as mental retardation and seizures. The gene GPR56 is important in brain development, and its mutation causes brain malformations in humans. The proposed research is designed to study GPR56-mediated brain development and its related pathophysiology.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS057536-03
Application #
7730834
Study Section
Developmental Brain Disorders Study Section (DBD)
Program Officer
Owens, David F
Project Start
2007-12-15
Project End
2012-11-30
Budget Start
2009-12-01
Budget End
2010-11-30
Support Year
3
Fiscal Year
2010
Total Cost
$365,991
Indirect Cost
Name
Children's Hospital Boston
Department
Type
DUNS #
076593722
City
Boston
State
MA
Country
United States
Zip Code
02115
Petersen, Sarah C; Luo, Rong; Liebscher, Ines et al. (2015) The adhesion GPCR GPR126 has distinct, domain-dependent functions in Schwann cell development mediated by interaction with laminin-211. Neuron 85:755-69
Schöneberg, Torsten; Liebscher, Ines; Luo, Rong et al. (2015) Tethered agonists: a new mechanism underlying adhesion G protein-coupled receptor activation. J Recept Signal Transduct Res 35:220-3
Giera, Stefanie; Deng, Yiyu; Luo, Rong et al. (2015) The adhesion G protein-coupled receptor GPR56 is a cell-autonomous regulator of oligodendrocyte development. Nat Commun 6:6121
Luo, Rong; Jeong, Sung-Jin; Yang, Annie et al. (2014) Mechanism for adhesion G protein-coupled receptor GPR56-mediated RhoA activation induced by collagen III stimulation. PLoS One 9:e100043
Liebscher, Ines; Ackley, Brian; Araç, Demet et al. (2014) New functions and signaling mechanisms for the class of adhesion G protein-coupled receptors. Ann N Y Acad Sci 1333:43-64
Jeong, Sung-Jin; Luo, Rong; Singer, Kathleen et al. (2013) GPR56 functions together with ?3?1 integrin in regulating cerebral cortical development. PLoS One 8:e68781
Singer, Kathleen; Luo, Rong; Jeong, Sung-Jin et al. (2013) GPR56 and the developing cerebral cortex: cells, matrix, and neuronal migration. Mol Neurobiol 47:186-96
Jeong, Sung-Jin; Luo, Rong; Li, Shihong et al. (2012) Characterization of G protein-coupled receptor 56 protein expression in the mouse developing neocortex. J Comp Neurol 520:2930-40
Luo, Rong; Jin, Zhaohui; Deng, Yiyu et al. (2012) Disease-associated mutations prevent GPR56-collagen III interaction. PLoS One 7:e29818
Jeong, Sung-Jin; Li, Shihong; Luo, Rong et al. (2012) Loss of Col3a1, the gene for Ehlers-Danlos syndrome type IV, results in neocortical dyslamination. PLoS One 7:e29767

Showing the most recent 10 out of 15 publications