Understanding the mechanisms underlying chronic pain is important to improving clinical treatment and developing novel therapeutic strategies. The AMPA receptor GluR2 subunit, through its binding to GRIP and PICK1, may function in the synaptic AMPA receptor trafficking that is critical for many forms of neuronal plasticity. GRIP anchors GluR2 at synapses, whereas PICK1 brings PKC1 to synaptic GluR2. PKC1 phosphorylates GluR2 Ser880 to release GluR2 from GRIP and to promote GluR2 internalization in vitro. We have made the novel discoveries that Complete Freund's adjuvant (CFA)-induced peripheral inflammation and spinal nerve injury (SNI) led to the disruption of interaction of spinal GluR2 with GRIP and that activation of spinal NMDA receptors produced an increase in the amount of GluR2 in the 150,000-g spin fraction that contains endocytosed clathrin-coated vesicles, suggesting that CFA-induced inflammatory and SNI-induced neuropathic insults might induce PKC phosphorylation of GluR2 Ser880 and drive GluR2 internalization via NMDA receptor activation in dorsal horn in vivo. This proposal seeks to determine whether and how GluR2 is internalized in dorsal horn neurons under chronic pain conditions and whether this internalization contributes to the central sensitization underlying chronic pain.
In Specific Aim 1, we will determine (a) if CFA injection and SNI time-dependently increase the level of GluR2 phosphorylation at Ser880 and the amount of GluR2 protein in 150,000- g spin fraction derived from dorsal horn, (b) if they decrease the surface and synaptic expression of GluR2 in dorsal horn neurons, and (c) if they result in a switch of Ca2+impermeable (GluR2-containing) AMPA receptors expressed on many dorsal horn neurons to Ca2+permeable (GluR2-lacking) AMPA receptors.
In Specific Aim 2, we will determine if spinal PKC1 or NMDA receptor activation increases the level of GluR2 phosphorylation at Ser880 and the amount of GluR2 in the 150,000-g fraction in in vitro dorsal horn slices. Furthermore, we will examine if inhibition of spinal PKC1 or NMDA receptor activation attenuates CFA- or SNI-induced increases in the level of GluR2 phosphorylation at Ser880 and the amount of GluR2 in the 150,000-g fraction in in vivo dorsal horn.
In Specific Aim 3, we will determine if blocking GluR2 internalization through inhibition of spinal PKC1 activation, blockade of PKC1 recruitment to GluR2 by PICK1 deletion, or targeted mutation of the GluR2 PKC1 phosphorylation site attenuates CFA- or SNI-induced thermal and mechanical pain hypersensitivity. The proposed studies will provide new insights into the mechanisms of both AMPA receptor and NMDA receptor actions on chronic pain and open a door for the development of new analgesics in treatment or prevention of chronic pain.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS058886-03
Application #
7689148
Study Section
Somatosensory and Chemosensory Systems Study Section (SCS)
Program Officer
Porter, Linda L
Project Start
2007-09-30
Project End
2011-05-31
Budget Start
2009-06-01
Budget End
2010-05-31
Support Year
3
Fiscal Year
2009
Total Cost
$358,750
Indirect Cost
Name
Johns Hopkins University
Department
Anesthesiology
Type
Schools of Medicine
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Meng, Lingzhong; Li, Jian; Lu, Yi et al. (2015) Ketamine - A Multifaceted Drug. Transl Perioper Pain Med 1:20-26
Liaw, Wen-Jinn; Tsao, Cheng-Ming; Huang, Go-Shine et al. (2014) Phosphoproteomics and bioinformatics analyses of spinal cord proteins in rats with morphine tolerance. PLoS One 9:e83817
Liang, Lingli; Fan, Longchang; Tao, Bo et al. (2013) Protein kinase B/Akt is required for complete Freund's adjuvant-induced upregulation of Nav1.7 and Nav1.8 in primary sensory neurons. J Pain 14:638-47
Liang, Lingli; Tao, Bo; Fan, Longchang et al. (2013) mTOR and its downstream pathway are activated in the dorsal root ganglion and spinal cord after peripheral inflammation, but not after nerve injury. Brain Res 1513:17-25
Kopach, Olga; Viatchenko-Karpinski, Viacheslav; Atianjoh, Fidelis E et al. (2013) PKC? is required for inflammation-induced trafficking of extrasynaptic AMPA receptors in tonically firing lamina II dorsal horn neurons during the maintenance of persistent inflammatory pain. J Pain 14:182-92
Tao, Yuan-Xiang (2012) AMPA receptor trafficking in inflammation-induced dorsal horn central sensitization. Neurosci Bull 28:111-20
Singh, Om V; Tao, Yuan-Xiang (2012) Two-dimensional gel electrophoresis: discovering neuropathic pain-associated synaptic biomarkers in spinal cord dorsal horn. Methods Mol Biol 851:47-63
Kao, Sheng-Chin; Zhao, Xiuli; Lee, Chun-Yi et al. (2012) Absence of ýý opioid receptor mRNA expression in astrocytes and microglia of rat spinal cord. Neuroreport 23:378-84
Shih, Ming-Hung; Kao, Sheng-Chin; Wang, Wei et al. (2012) Spinal cord NMDA receptor-mediated activation of mammalian target of rapamycin is required for the development and maintenance of bone cancer-induced pain hypersensitivities in rats. J Pain 13:338-49
Lee, Chun-Yi; Perez, Federico M; Wang, Wei et al. (2011) Dynamic temporal and spatial regulation of mu opioid receptor expression in primary afferent neurons following spinal nerve injury. Eur J Pain 15:669-75

Showing the most recent 10 out of 25 publications