Autism spectrum disorders (ASD) affect ~60 in 10,000 children but in only ~10% of these individuals is autism associated with a recognized cause. Understanding the molecular pathways dysregulated in Angelman syndrome (AS), a rare and severe developmental disorder related to autism, may provide key insights leading to identification of autism susceptibility genes and pathways. Approximately 3% of all autism cases result from maternal duplications of the region containing the AS gene UBE3A. Variants in genes encoding protein targets of the ubiquitin ligase UBE3A may, therefore, confer a genetic susceptibility to autism or even cause an ASD phenotype. Here we describe a proteomics strategy utilizing the powerful genetic model organism Drosophila melanogaster to identify protein targets of human UBE3A and fly Dube3a. UBE3A will be over-expressed in the brains of flies using the GAL4/UAS system in order to increase or decrease the levels of UBE3A/Dube3a protein targets. We will then identify these targets by Rotofor-assisted proteomic profiling and mass spectrometry. Potential targets will be validated though genetic interactions in the eye and neuromuscular junction, binding assays in 293T cells and immunohistochemistry in the brains of both Ube3a-deficient and over-expressing mice. We anticipate that these studies will provide us with new autism candidate genes for future validation in families that demonstrate heritable autism risk. To this end, we propose the following specific aims:
Specific Aim 1 : To identify potential UBE3A and Dube3a regulated proteins using proteomic profiling in Drosophila head extracts. Completion of this aim will result in a collection of potential Dube3a and UBE3A regulated proteins for subsequent validation and autism genetic studies.
Specific Aim 2 : To validate physical, biochemical and genetic interactions between potential targets and Dube3a.
This aim will test the hypothesis that the proteins detected in Aim #1 are regulated directly or indirectly by Dube3a.
Specific Aim 3 : To determine if UBE3A regulated protein expression patterns are altered in the brains of Ube3a deficient and over-expression mice.
This aim will demonstrate a link between Ube3a target proteins and altered brain function in the mouse models of Angelman syndrome and proximal 15q duplication autism.

Public Health Relevance

The primary goal of this research is to identify proteins regulated by UBE3A and to investigate the possibility that these proteins are also dysregulated or mutated in some cases of autism. Understanding how increased levels of UBE3A result in an autism phenotype at the molecular level will help us better identify and treat the underlying liability in idopathic autism.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Research Project (R01)
Project #
Application #
Study Section
Developmental Brain Disorders Study Section (DBD)
Program Officer
Mamounas, Laura
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Tennessee Health Science Center
Schools of Medicine
United States
Zip Code
Hope, Kevin A; LeDoux, Mark S; Reiter, Lawrence T (2017) Glial overexpression of Dube3a causes seizures and synaptic impairments in Drosophila concomitant with down regulation of the Na+/K+ pump ATP?. Neurobiol Dis 108:238-248
Valdez, Colleen; Scroggs, Reese; Chassen, Rachel et al. (2015) Variation in Dube3a expression affects neurotransmission at the Drosophila neuromuscular junction. Biol Open 4:776-82
Jensen, Laura; Farook, M Febin; Reiter, Lawrence T (2013) Proteomic profiling in Drosophila reveals potential Dube3a regulation of the actin cytoskeleton and neuronal homeostasis. PLoS One 8:e61952
Farook, M Febin; DeCuypere, Michael; Hyland, Keith et al. (2012) Altered serotonin, dopamine and norepinepherine levels in 15q duplication and Angelman syndrome mouse models. PLoS One 7:e43030
Ferdousy, Faiza; Bodeen, William; Summers, Kyle et al. (2011) Drosophila Ube3a regulates monoamine synthesis by increasing GTP cyclohydrolase I activity via a non-ubiquitin ligase mechanism. Neurobiol Dis 41:669-77
Allensworth, Melody; Saha, Anand; Reiter, Lawrence T et al. (2011) Normal social seeking behavior, hypoactivity and reduced exploratory range in a mouse model of Angelman syndrome. BMC Genet 12:7