Tuberous sclerosis complex (TSC) affects 1 in 6000 individuals. TSC is an autosomal dominant inherited disorder resulting from mutations in at least two different genes, TSC1 and TSC2. Patients with TSC manifest various phenotypes associated with lesions in brain, retina, heart, kidney, lung, liver and skin. Neurological problems include epilepsy, which is present in over 80% of TSC subjects and is often medically refractory. In these patients, surgical treatment of the epilepsy is problematic because of the difficulty in differentiating epileptic brain lesions from nearby non-epileptic lesions. In our previous studies (RO1 NS38324), we found that positron emission tomography (PET) using the tracer alpha[C-11]methyl-L-tryptophan (AMT) can differentiate between epileptogenic and non-epileptogenic tubers interictally. This test has become routine in the surgical evaluation of our TSC patients and, indeed, many other epilepsy surgery centers refer their TSC patients for AMT PET scanning in Detroit. The increased AMT uptake in the epileptogenic regions of TSC reflects increased metabolism of tryptophan along the kynurenine pathway (rather than the serotonin pathway) to produce endogenous convulsants, e.g., quinolinic acid. This observation provides important clues to epileptogenesis and, therefore, a better understanding of this mechanism is important not only for TSC but also for other epileptic disorders.
Aim 1 (with 3 hypotheses) was designed to provide a better understanding of the pathomechanisms associated with increased AMT uptake in epileptogenic tubers. Immunocytochemical studies will be performed to increase the understanding of tryptophan metabolism by indoleamine 2,3-dioxygenase (IDO) in TSC. One of the disadvantages of AMT PET in identifying epileptogenic tubers is that its sensitivity is only about 65%. Our preliminary data suggest that diffusion tensor imaging (DTI) measurements show differences between epileptogenic and non-epileptogenic tubers both in their connectivity patterns to subcortical structures and in their surrounding anisotropy and, when used in conjunction with AMT PET, the epileptogenic brain region can be identified in the vast majority of patients.
Aim 2 (with 3 hypotheses) was designed to determine whether these DTI measures can further our understanding of the unique characteristics which differentiate epileptogenic from non-epileptogenic tubers and thus provide further localization of seizure foci in TSC subjects. Our proposed studies will provide important clinical data to improve surgical evaluation of TSC patients. Furthermore, these studies will provide important mechanistic information which will likely translate into novel pharmacological approaches for epilepsy.

Public Health Relevance

of this proposal for public health is the improvement of the surgical evaluation of TSC patients who are considered for resective surgery of epileptogenic brain tubers. Moreover, these studies will provide important mechanistic information which will likely translate into novel pharmacological approaches for epilepsy.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS064989-04
Application #
8507283
Study Section
Developmental Brain Disorders Study Section (DBD)
Program Officer
Mamounas, Laura
Project Start
2010-07-01
Project End
2015-06-30
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
4
Fiscal Year
2013
Total Cost
$314,445
Indirect Cost
$107,573
Name
Wayne State University
Department
Pediatrics
Type
Schools of Medicine
DUNS #
001962224
City
Detroit
State
MI
Country
United States
Zip Code
48202
Pilli, Vinod K; Chugani, Harry T; Juhász, Csaba (2017) Enlargement of deep medullary veins during the early clinical course of Sturge-Weber syndrome. Neurology 88:103-105
Luat, Aimee F; Asano, Eishi; Kumar, Ajay et al. (2017) Corpus Callosotomy for Intractable Epilepsy Revisited: The Children's Hospital of Michigan Series. J Child Neurol 32:624-629
Dombkowski, Alan A; Batista, Carlos E; Cukovic, Daniela et al. (2016) Cortical Tubers: Windows into Dysregulation of Epilepsy Risk and Synaptic Signaling Genes by MicroRNAs. Cereb Cortex 26:1059-71
Jeong, Jeong-won; Tiwari, Vijay N; Shin, Joseph et al. (2015) Assessment of brain damage and plasticity in the visual system due to early occipital lesion: comparison of FDG-PET with diffusion MRI tractography. J Magn Reson Imaging 41:431-8
Chugani, Harry T; Ilyas, Mohammed; Kumar, Ajay et al. (2015) Surgical treatment for refractory epileptic spasms: The Detroit series. Epilepsia 56:1941-9
Jeong, Jeong-Won; Asano, Eishi; Juhász, Csaba et al. (2015) Localization of specific language pathways using diffusion-weighted imaging tractography for presurgical planning of children with intractable epilepsy. Epilepsia 56:49-57
Kamson, David O; Juhász, Csaba; Chugani, Harry T et al. (2015) Novel diffusion tensor imaging technique reveals developmental streamline volume changes in the corticospinal tract associated with leg motor control. Brain Dev 37:370-5
Jeong, Jeong-Won; Asano, Eishi; Juhász, Csaba et al. (2014) Quantification of primary motor pathways using diffusion MRI tractography and its application to predict postoperative motor deficits in children with focal epilepsy. Hum Brain Mapp 35:3216-26
Jeong, Jeong-Won; Asano, Eishi; Yeh, Fang-Cheng et al. (2013) Independent component analysis tractography combined with a ball-stick model to isolate intravoxel crossing fibers of the corticospinal tracts in clinical diffusion MRI. Magn Reson Med 70:441-53
Jeong, Jeong-Won; Chugani, Harry T; Juhász, Csaba (2013) Localization of function-specific segments of the primary motor pathway in children with Sturge-Weber syndrome: a multimodal imaging analysis. J Magn Reson Imaging 38:1152-61

Showing the most recent 10 out of 17 publications