The goal of this research is to develop and test a method to guide repair and regeneration of the central nervous system following injury or degeneration. We propose that by creating both a regenerative environment as well as directing intrinsic plasticity among neurons, we can achieve a new milestone in neural repair. If successful, this approach could be used to treat patients suffering from central nervous system damage such as traumatic brain injury, stroke, or spinal cord injury in order to reduce the burden of neurological disease on individuals and society. Our studies employ a novel combination of targeted electrical microstimulation and stem cell therapies to guide the formation of appropriate and functional connections bypassing an injury. We will test our approach in a rodent model of incomplete cervical spinal cord injury that is representative of insults throughout the central nervous system. It is known that during development of the nervous system, stem cells produce immature astrocytes that create an environment to support axon guidance and synaptic plasticity. Here, we hypothesize that neural plasticity and the repair of damaged neurons can be facilitated by re-creating the developmental phenotype of astrocytes surrounding an injury site. In a first of its kind approach, we will derive immature astrocytes from autologous adult stem cells and transplant them near a spinal cord lesion to create a supportive environment for plasticity and neural repair. We propose that providing environmental support alone has had limited success because it does not address the intrinsic drive of neurons to grow. Synchronous and appropriate neural activity is also needed to direct the formation of functional synaptic connections in the intact and injured nervous system. Here we will use a neuroprosthetic device to deliver microstimulation to targeted sites within the spinal cord below the injury that is synchronized with functionally related activity in the motor cortex. Targeted microstimulation will strengthen appropriate and functional connections via mechanisms of Hebbian plasticity. Rather than attempt long-tract regeneration in the spinal cord, our approach aims to promote the formation of indirect connections via spared pathways bypassing the lesion. The extent of recovery will be measured using behavioral tasks, and electrophysiological and histological methods. This will determine the ability of synchronous, targeted microstimulation to guide implanted stem cells in the formation of appropriate and functional connections following damage to the central nervous system. We contend that microstimulation will collaborate with the transplant environment to produce a multiplicative effect on local plasticity.

Public Health Relevance

This research aims to develop a treatment for damage to the brain or spinal cord as occurs, for example, following traumatic brain injury, stroke, or spinal cord injury. Targeted electrical microstimulation will be applied across the injury in order to guide implanted stem cells to make appropriate connections and restore function following injury.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
3R01NS066357-02S1
Application #
8131379
Study Section
Special Emphasis Panel (ZMH1-ERB-L (05))
Program Officer
Kleitman, Naomi
Project Start
2009-08-15
Project End
2013-07-31
Budget Start
2010-08-01
Budget End
2011-07-31
Support Year
2
Fiscal Year
2010
Total Cost
$65,960
Indirect Cost
Name
University of Washington
Department
Physiology
Type
Schools of Medicine
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Tan, James-Kevin Y; Pham, Binhan; Zong, Yujin et al. (2016) Microbubbles and ultrasound increase intraventricular polyplex gene transfer to the brain. J Control Release 231:86-93
Mondello, Sarah E; Sunshine, Michael D; Fischedick, Amanda E et al. (2015) A Cervical Hemi-Contusion Spinal Cord Injury Model for the Investigation of Novel Therapeutics Targeting Proximal and Distal Forelimb Functional Recovery. J Neurotrauma 32:1994-2007
Widge, Alik S; Moritz, Chet T (2014) Pre-frontal control of closed-loop limbic neurostimulation by rodents using a brain-computer interface. J Neural Eng 11:024001
Widge, Alik S; Dougherty, Darin D; Moritz, Chet T (2014) Affective Brain-Computer Interfaces As Enabling Technology for Responsive Psychiatric Stimulation. Brain Comput Interfaces (Abingdon) 1:126-136
Mondello, Sarah E; Kasten, Michael R; Horner, Philip J et al. (2014) Therapeutic intraspinal stimulation to generate activity and promote long-term recovery. Front Neurosci 8:21
Sunshine, Michael D; Cho, Frances S; Lockwood, Danielle R et al. (2013) Cervical intraspinal microstimulation evokes robust forelimb movements before and after injury. J Neural Eng 10:036001
Nutt, Samuel E; Chang, Eun-Ah; Suhr, Steven T et al. (2013) Caudalized human iPSC-derived neural progenitor cells produce neurons and glia but fail to restore function in an early chronic spinal cord injury model. Exp Neurol 248:491-503
Kasten, M R; Sunshine, M D; Secrist, E S et al. (2013) Therapeutic intraspinal microstimulation improves forelimb function after cervical contusion injury. J Neural Eng 10:044001