Precise assembly of synapses is critical for proper functioning of the brain. Abnormal synapse formation or synaptic loss contributes to the progression of many neurological disorders. The goals of the research proposed here are to understand the molecular mechanisms underlying synapse formation in the brain and then use this information to develop new treatments for diseases resulting from synaptic malfunction. Synapses are formed by signaling between presynaptic and postsynaptic cells. Postsynaptic cell-derived """"""""presynaptic organizers"""""""" promote local differentiation of presynaptic axons into functional nerve terminals at sites of synaptic contact. We performed an unbiased search for such presynaptic organizers and identified fibroblast growth factor 22 (FGF22), and its close relatives FGF7 and FGF10 as molecules that promote differentiation of presynaptic nerve terminals. In the brain, two major types of synapses, excitatory and inhibitory, need to be formed at their appropriate sites. An imbalance between excitatory and inhibitory synapses has been proposed to contribute to various neurological disorders including autism, schizophrenia, Tourette syndrome and epilepsy. We have recently found that FGF22 and FGF7 promote the organization of excitatory and inhibitory presynaptic terminals, respectively, as target-derived presynaptic organizers in the hippocampus. The differentiation of excitatory or inhibitory nerve terminals is specifically impaired in mutants lacking FGF22 or FGF7. As expected from the alterations in excitatory/inhibitory balance, FGF22 knockout (KO) mice are resistant and FGF7KO mice are prone to epileptic seizures. These results indicate that understanding the precise mechanisms of FGF-mediated excitatory and inhibitory synapse formation will lead to novel treatment strategies for epilepsy. Here we address (1) the mechanisms underlying the differential effects by FGF22 and FGF7 on excitatory and inhibitory presynaptic differentiation, (2) the signaling mechanisms that mediate the effects of FGFs, (3) physiological consequences of FGF deficiency in vivo, and (4) the role of FGFs in epileptogenesis. For these studies, we propose the following aims.
Aim 1 : Determine the in vivo localization of FGF22 and FGF7 and their dynamic distribution to distinct postsynaptic sites.
Aim 2 : Examine whether FGF22 and FGF7 signal through different FGF receptors and signaling pathways for their differential presynaptic effects.
Aim 3 : Delineate the functional consequences of FGF inactivation during brain development.
Aim 4 : Determine whether FGFs are involved in epileptic circuit formation during development or after brain insults. We will use an integrated combination of molecular genetic, cellular biological, biochemical, electrophysiological and imaging techniques to address these aims. It is anticipated that this study will reveal novel mechanisms underlying specific synapse formation and suggest novel strategies for treating brain disorders, such as epilepsy, that result from improper synapse formation.

Public Health Relevance

The proposed research is aimed at understanding the molecular and cellular mechanisms of specific synapse formation in the brain. Specific synapse formation is critical for the proper functioning of the nervous system. The coordinated studies focus on the synaptogenic role of fibroblast growth factors (FGFs) and their differential effects on excitatory and inhibitory synapse formation in the hippocampus. We will specifically determine the role of FGFs in the pathogenesis of epilepsy, a disease with improper synaptic connections in the hippocampus. This body of work will allow us to determine the precise function and underlying mechanisms for FGFs in specific synapse formation, and help design appropriate strategies for the treatment and prevention of epilepsy.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS070005-04
Application #
8494699
Study Section
Developmental Brain Disorders Study Section (DBD)
Program Officer
Talley, Edmund M
Project Start
2010-09-01
Project End
2013-12-15
Budget Start
2013-07-01
Budget End
2013-12-15
Support Year
4
Fiscal Year
2013
Total Cost
$33,513
Indirect Cost
$11,961
Name
University of Michigan Ann Arbor
Department
Biochemistry
Type
Schools of Medicine
DUNS #
073133571
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Terauchi, Akiko; Gavin, Elizabeth; Wilson, Julia et al. (2017) Selective Inactivation of Fibroblast Growth Factor 22 (FGF22) in CA3 Pyramidal Neurons Impairs Local Synaptogenesis and Affective Behavior Without Affecting Dentate Neurogenesis. Front Synaptic Neurosci 9:17
Hu, Hsiao-Tang; Umemori, Hisashi; Hsueh, Yi-Ping (2016) Postsynaptic SDC2 induces transsynaptic signaling via FGF22 for bidirectional synaptic formation. Sci Rep 6:33592
Dabrowski, Ania; Umemori, Hisashi (2016) Buttressing a balanced brain: Target-derived FGF signaling regulates excitatory/inhibitory tone and adult neurogenesis within the maturating hippocampal network. Neurogenesis (Austin) 3:e1168504
Williams, Aislinn J; Yee, Patricia; Smith, Mitchell C et al. (2016) Deletion of fibroblast growth factor 22 (FGF22) causes a depression-like phenotype in adult mice. Behav Brain Res 307:11-7
Terauchi, Akiko; Johnson-Venkatesh, Erin M; Bullock, Brenna et al. (2016) Retrograde fibroblast growth factor 22 (FGF22) signaling regulates insulin-like growth factor 2 (IGF2) expression for activity-dependent synapse stabilization in the mammalian brain. Elife 5:
Terauchi, Akiko; Timmons, Kendall M; Kikuma, Koto et al. (2015) Selective synaptic targeting of the excitatory and inhibitory presynaptic organizers FGF22 and FGF7. J Cell Sci 128:281-92
Jacobi, Anne; Loy, Kristina; Schmalz, Anja M et al. (2015) FGF22 signaling regulates synapse formation during post-injury remodeling of the spinal cord. EMBO J 34:1231-43
Dabrowski, Ania; Terauchi, Akiko; Strong, Cameron et al. (2015) Distinct sets of FGF receptors sculpt excitatory and inhibitory synaptogenesis. Development 142:1818-30
Williams, Aislinn J; Umemori, Hisashi (2014) The best-laid plans go oft awry: synaptogenic growth factor signaling in neuropsychiatric disease. Front Synaptic Neurosci 6:4
Lee, Clara H; Umemori, Hisashi (2013) Suppression of epileptogenesis-associated changes in response to seizures in FGF22-deficient mice. Front Cell Neurosci 7:43

Showing the most recent 10 out of 18 publications