Stroke is the leading cause of adult disability. As the population ages, stroke incidence is expected to markedly increase, fostering an intense research focus on mechanisms of repair and recovery in this disease. However, this research focus has been directed almost entirely to experimental models of large artery or cortical infarcts. These models produce strokes in cortex, striatum or both. However, up to 25% of all strokes in humans occur in white matter. White matter strokes are a source of significant disability and can accumulate to cause vascular dementia, the second leading cause of dementia. Studies in white matter injury in models of multiple sclerosis indicate that glial progenitor cells can respond to the injury and initiate a process of repair and even recovery. There have been no studies of the possibility of white matter repair and recovery in subcortical or white matter stroke. This limitation has been due to lack of an effective animal model of white matter stroke. We have recently developed a model of subcortical stroke in white matter below the mouse forelimb motor cortex that models many aspects of this disease in humans. This mouse model indicates that white matter stroke produces a zone of complete damage and death of oligodendrocytes, but also a surround of evolving partial damage, an expansion of oligodendrocyte progenitor cells, and new populations of oligodendrocytes. This process in the stroke surround suggests a partial white matter repair in stroke. The goals of this grant are to determine the cellular and molecular mechanisms of white matter repair in subcortical/white matter stroke, to extend these findings to aged animals, and to manipulate these systems to enhance white matter repair and functional recovery. The proposed studies will use a multi-disciplinary approach of genetic cell fate mapping, electrophysiological characterization of white matter function, behavioral study of mouse motor recovery and laser capture and genetic analysis of glial progenitor responses in white matter stroke. These studies will take a field of stroke in which there is no data on white matter repair, develop a detailed cellular and molecular understanding of glial progenitor responses and white matter repair, and then manipulate candidate molecular systems to determine their causal role in repair and recovery in this disease.

Public Health Relevance

Stroke in the areas of the brain that carry connections, termed cerebral white matter, is a common subtype of stroke. However, there have been few studies of the mechanisms of damage and brain repair in this disease. The studies in this grant determine the molecular and cellular mechanisms of repair and recovery in white matter stroke.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS071481-04
Application #
8492179
Study Section
Special Emphasis Panel (ZRG1-BDCN-Q (02))
Program Officer
Bosetti, Francesca
Project Start
2010-07-15
Project End
2015-06-30
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
4
Fiscal Year
2013
Total Cost
$318,583
Indirect Cost
$111,711
Name
University of California Los Angeles
Department
Neurology
Type
Schools of Medicine
DUNS #
092530369
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Kokaia, Zaal; Llorente, Irene L; Carmichael, S Thomas (2018) Customized Brain Cells for Stroke Patients Using Pluripotent Stem Cells. Stroke 49:1091-1098
Carmichael, S Thomas; Kathirvelu, Balachandar; Schweppe, Catherine A et al. (2017) Molecular, cellular and functional events in axonal sprouting after stroke. Exp Neurol 287:384-394
Carmichael, S Thomas (2016) Emergent properties of neural repair: elemental biology to therapeutic concepts. Ann Neurol 79:895-906
Carmichael, S Thomas (2016) The 3 Rs of Stroke Biology: Radial, Relayed, and Regenerative. Neurotherapeutics 13:348-59
Sozmen, Elif G; Rosenzweig, Shira; Llorente, Irene L et al. (2016) Nogo receptor blockade overcomes remyelination failure after white matter stroke and stimulates functional recovery in aged mice. Proc Natl Acad Sci U S A 113:E8453-E8462
Dobkin, Bruce H; Carmichael, S Thomas (2016) The Specific Requirements of Neural Repair Trials for Stroke. Neurorehabil Neural Repair 30:470-8
Nunez, Stefanie; Doroudchi, M Mehdi; Gleichman, Amy J et al. (2016) A Versatile Murine Model of Subcortical White Matter Stroke for the Study of Axonal Degeneration and White Matter Neurobiology. J Vis Exp :
Rosenzweig, Shira; Carmichael, S Thomas (2015) The axon-glia unit in white matter stroke: mechanisms of damage and recovery. Brain Res 1623:123-34
Hinman, Jason D; Lee, Monica D; Tung, Spencer et al. (2015) Molecular disorganization of axons adjacent to human lacunar infarcts. Brain 138:736-45
Overman, Justine J; Carmichael, S Thomas (2014) Plasticity in the injured brain: more than molecules matter. Neuroscientist 20:15-28

Showing the most recent 10 out of 17 publications