The main goal of these studies is to elucidate the mechanisms underlying voltage- and intracellular pHi- dependent gating of connexin(Cx)-based gap junction (GJ) channels and unapposed hemi channels (uHCs). pHi is a fundamental modulator of cell function that influences various physiological processes such as metabolism, proliferation, function of membrane channels and transporters, cell movement and contractility. pHi can change considerably during pathological processes, most often during ischemia, and H+ ions have been shown to have broad effects on electrical and metabolic cell-cell communication through GJs and paracrine signaling through uHCs. Sp.
Aim 1 focuses on pHi-dependent modulation of gating by transjunctional voltage (Vj) in homotypic GJs. We have shown that each hemi channel within a GJ channel has two distinct gating mechanisms, termed fast and slow gates, that are sensitive to Vj and distinguished by the channel closure to a substate and fully, respectively. We will test the hypothesis that dynamic pHi-mediated changes in gj with modest acidification occur through modulation of the Vj sensitivity of the fast gate in a Cx- type dependent manner, while stronger acidification leads to full uncoupling in all Cxs due to the closure of the slow gate without changes in the sensitivity to Vj. We will test the hypothesis that acidification-mediated full uncoupling is due to transition of the slow gate from a closed to a deep-closed state that can be accelerated by applied Vjs and by chemical uncouplers. Sp.
Aim 2 focuses on pHi-dependent modulation of Vj-gating in heterotypic GJs formed in tissues co-expressing several Cx isoforms. In heterotypic GJs, acidification-induced uncoupling is defined mainly by the Cx exhibiting higher sensitivity to pHi allowing to test at higher resolution than in homotypic GJs that indeed pHi-dependent gating is hemi channel-based and that fast and slow gates play different roles in pHi-dependent regulation of cell-cell coupling. We will test the hypothesis that the NT-M1 domain of Cx is directly involved in Vj- and pHi-dependent gating as suggested by our data from Cx43*mCx30.2 chimeras. Sp.
Aim 3 focuses on pHi-dependent gating of uHCs. We will test the hypothesis that pH-dependent modulation of Vj-gating observed in GJ channels has a common background with voltage- gating of uHCs, i.e., alkalization reduces and acidification increases voltage-sensitive gating of uHCs. We will identify residues in the NT-M1 domain that affect unitary conductance, sensitivity to voltage and permeability to dyes of uHCs. We will test the hypothesis that the pH sensor of uHCs is on the cytoplasmic side as we have reported earlier for Cx46 uHCs. Comparison of Vj- and pHi-dependent gating properties among uHCs and corresponding GJ channels will advance our knowledge as to what extent docking of uHCs alters biophysical properties of GJs. In Sp.
Aims 1 and 3, we will test whether Vj- and pH-dependent gating is associated with a change in calmodulin (CaM) co-localization with GJs and whether CaM influences the interaction between H+ ions and gating elements of slow and fast gates of GJs and uHCs.

Public Health Relevance

The main goal of these studies is to elucidate the mechanisms underlying voltage- and intracellular pH-dependent gating of connexin(Cx)-based gap junction (cell-cell) channels and non-junctional hemi channels expressed on the cell surface, which mediate electrical and metabolic cell-cell communication and paracrine signaling. pH is a fundamental modulator of cell function that influences various physiological processes such as metabolism, proliferation, function of membrane channels and transporters, cell movement and contractility. The study of these mechanisms will help to identify new therapeutic approaches to treat ischemia and other diseases during which changes in pH take place and typically increase the severity of the pathological process.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS072238-02
Application #
8133366
Study Section
Intercellular Interactions (ICI)
Program Officer
Silberberg, Shai D
Project Start
2010-09-01
Project End
2014-06-30
Budget Start
2011-07-01
Budget End
2012-06-30
Support Year
2
Fiscal Year
2011
Total Cost
$355,863
Indirect Cost
Name
Albert Einstein College of Medicine
Department
Neurosciences
Type
Schools of Medicine
DUNS #
110521739
City
Bronx
State
NY
Country
United States
Zip Code
10461
Kucheryavykh, Lilia Y; Benedikt, Jan; Cubano, Luis A et al. (2017) Polyamines preserve connexin 43-mediated gap junctional communication during intracellular hypercalcemia and acidosis. Neuroreport 28:208-213
Garré, Juan Mauricio; Yang, Guang; Bukauskas, Feliksas F et al. (2017) An Acute Mouse Spinal Cord Slice Preparation for Studying Glial Activation ex vivo. Bio Protoc 7:
Snipas, Mindaugas; Rimkute, Lina; Kraujalis, Tadas et al. (2017) Functional asymmetry and plasticity of electrical synapses interconnecting neurons through a 36-state model of gap junction channel gating. PLoS Comput Biol 13:e1005464
Maciunas, Kestutis; Snipas, Mindaugas; Paulauskas, Nerijus et al. (2016) Reverberation of excitation in neuronal networks interconnected through voltage-gated gap junction channels. J Gen Physiol 147:273-88
Snipas, Mindaugas; Kraujalis, Tadas; Paulauskas, Nerijus et al. (2016) Stochastic Model of Gap Junctions Exhibiting Rectification and Multiple Closed States of Slow Gates. Biophys J 110:1322-33
Garré, Juan Mauricio; Yang, Guang; Bukauskas, Feliksas F et al. (2016) FGF-1 Triggers Pannexin-1 Hemichannel Opening in Spinal Astrocytes of Rodents and Promotes Inflammatory Responses in Acute Spinal Cord Slices. J Neurosci 36:4785-801
Skatchkov, Serguei N; Bukauskas, Feliksas F; Benedikt, Jan et al. (2015) Intracellular spermine prevents acid-induced uncoupling of Cx43 gap junction channels. Neuroreport 26:528-32
Kalinowska, Magdalena; Chávez, Andrés E; Lutzu, Stefano et al. (2015) Actinin-4 Governs Dendritic Spine Dynamics and Promotes Their Remodeling by Metabotropic Glutamate Receptors. J Biol Chem 290:15909-20
Palacios-Prado, Nicolás; Chapuis, Sandrine; Panjkovich, Alejandro et al. (2014) Molecular determinants of magnesium-dependent synaptic plasticity at electrical synapses formed by connexin36. Nat Commun 5:4667
Wang, Nan; De Bock, Marijke; Decrock, Elke et al. (2013) Paracrine signaling through plasma membrane hemichannels. Biochim Biophys Acta 1828:35-50

Showing the most recent 10 out of 25 publications