Huntington's disease (HD) is a fatal, autosomal dominant neurodegenerative disorder caused by an expanded CAG tract in the HD gene that results in gradual loss of memory, cognitive skills and normal movements. Multiple lines of research point to dysregulated transcription as a prevailing feature of HD pathology and suggest that altered histone modification by the mutant protein (Htt) may contribute to this process. However, thus far there has been no genome-wide analysis of histone modifications in human HD brain. The studies proposed here apply novel genomic technology to the search for epigenetic signatures in HD brains with the goal of gaining insight into HD pathogenesis. Our proposal capitalizes on two unique resources: (1) a novel FACS-ChIP-seq method which we will apply to establish and compare the methylomes of neurons from HD and control brains;and (2) a unique sample of HD brains, including a set matched for CAG repeat expansion (range 42-44 repeats) but onset ages differing by 30 years or more. The brains have been extensively neuropathologically characterized for degree of both striatal and cortical involvement. Since we found that histone H3 methylation markings in HD brains overlap highly with the signal in CD4+ cells, we are also comparing the altered epigenetic signature seen in HD brain to that in blood samples at varying stages of disease (presymptomatic, early and advanced HD) as this may offer a novel epigenetic biomarker in HD blood. Such biomarkers are of translational significance for the evaluation of drug treatments to realign the disrupted gene expression. We have preliminary data using the FACS-ChIP-Seq method in six HD prefrontal cortex samples and eleven normal controls, which provides tantalizing evidence for the significance of the proposed studies and demonstrates our capabilities to apply the techniques and to meaningfully interpret the findings. Our approach represents the most comprehensive analysis to date addressing the role of histone methylation in HD pathogenesis. Regardless of outcome, these studies will provide critical new insights into the molecular pathways of HD pathogenesis and may also uncover novel molecular targets for HD treatment. The high translational impact of this proposal is increased by our proposal to identify and characterize a unique histone methylation biomarker in HD blood cells. If successful, identification of such a biomarker will greatly facilitate clinical trials for novel HD therapies and offers a novel method to evaluate whether new drug treatments rectify disrupted gene expression.

Public Health Relevance

The proposed studies apply novel genomic technologies to characterize the epigenetic signatures that regulate gene expression in the brain in Huntington's disease (HD). Because gene expression is thought to be disrupted in HD, the studies will provide insight how the mutation in the HD gene leads to the death of brain cells, and may uncover new strategies for HD treatment. We are also comparing the altered patterns seen in HD brain to those in blood samples as this may offer a method to evaluate whether new drug treatments rectify or realign the disrupted gene expression.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS073947-03
Application #
8462706
Study Section
Molecular Neurogenetics Study Section (MNG)
Program Officer
Sutherland, Margaret L
Project Start
2011-07-01
Project End
2016-04-30
Budget Start
2013-05-01
Budget End
2014-04-30
Support Year
3
Fiscal Year
2013
Total Cost
$600,215
Indirect Cost
$162,968
Name
Boston University
Department
Neurology
Type
Schools of Medicine
DUNS #
604483045
City
Boston
State
MA
Country
United States
Zip Code
02118
Choi, Seung Hoan; Labadorf, Adam T; Myers, Richard H et al. (2017) Evaluation of logistic regression models and effect of covariates for case-control study in RNA-Seq analysis. BMC Bioinformatics 18:91
Labadorf, Adam; Choi, Seung H; Myers, Richard H (2017) Evidence for a Pan-Neurodegenerative Disease Response in Huntington's and Parkinson's Disease Expression Profiles. Front Mol Neurosci 10:430
Hu, Qidi; Ren, Xiangpeng; Liu, Ya et al. (2016) Aberrant adenosine A2A receptor signaling contributes to neurodegeneration and cognitive impairments in a mouse model of synucleinopathy. Exp Neurol 283:213-23
Wake, Christian; Labadorf, Adam; Dumitriu, Alexandra et al. (2016) Novel microRNA discovery using small RNA sequencing in post-mortem human brain. BMC Genomics 17:776
Hoss, Andrew G; Labadorf, Adam; Beach, Thomas G et al. (2016) microRNA Profiles in Parkinson's Disease Prefrontal Cortex. Front Aging Neurosci 8:36
Pedata, Felicita; Dettori, Ilaria; Coppi, Elisabetta et al. (2016) Purinergic signalling in brain ischemia. Neuropharmacology 104:105-30
Li, Yan; He, Yan; Chen, Mozi et al. (2016) Optogenetic Activation of Adenosine A2A Receptor Signaling in the Dorsomedial Striatopallidal Neurons Suppresses Goal-Directed Behavior. Neuropsychopharmacology 41:1003-13
Tsuji, Junko; Weng, Zhiping (2016) DNApi: A De Novo Adapter Prediction Algorithm for Small RNA Sequencing Data. PLoS One 11:e0164228
Correia, Kevin; Harold, Denise; Kim, Kyung-Hee et al. (2015) The Genetic Modifiers of Motor OnsetAge (GeM MOA) Website: Genome-wide Association Analysis for Genetic Modifiers of Huntington's Disease. J Huntingtons Dis 4:279-84
Labadorf, Adam; Hoss, Andrew G; Lagomarsino, Valentina et al. (2015) RNA Sequence Analysis of Human Huntington Disease Brain Reveals an Extensive Increase in Inflammatory and Developmental Gene Expression. PLoS One 10:e0143563

Showing the most recent 10 out of 33 publications