Tyrosine kinases control cell proliferation, differentiation, migration and survival, and are often deregulated in cancer. We are investigating Src proto-oncogene dependent cell migrations during mammalian development. Our past results showed that a Src-dependent signaling mechanism regulates the precise positioning and layering of cells in the developing mouse brain. Our more recent results provide evidence for a Src signaling event that increases membrane-localized N-cadherin on randomly-moving multipolar neurons in the neocortex. N-cadherin then enables directional cell migration. We also discovered the importance of tyrosine phosphorylation-dependent protein turnover in terminating neuron migrations in the cortex, and extended this finding to show that a similar process inhibits Src-dependent tumorigenesis. Therefore we propose to investigate three innovative hypotheses: (1) That a secreted signaling molecule, Reelin, increases surface N- cadherin levels by altering traffic (endo-/exocytosis) or inducing stabilization of surface N-cadherin. (2) That multipolar cells interpret direction signals from the environment through N-cadherin itself or through a cadherin- associated co-receptor. The direction signal may be conveyed by cell-cell contact or by a diffusible signal. (3) That the final positions of cortical neurons are determined by the timely cessation of Reelin-dependent terminal translocation, which stops when Cullin5-dependent mechanisms destroy the Src substrate, Dab1. Progress in these Aims will reveal molecular mechanisms underlying complex cell migrations in vivo.

Public Health Relevance

Src kinases are tightly regulated enzymes that normally control development of the embryo and homeostasis of the adult, yet Src de-regulation leads to cancer. This proposal will investigate a key developmental function of Src in controlling the movements of immature neurons in the brain during development. Past research led to the discovery of a pathway that inhibits Src during development and also in cancer. The future aims address other new aspects of cell biology discovered in the brain development system.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Research Project (R01)
Project #
Application #
Study Section
Neurodifferentiation, Plasticity, and Regeneration Study Section (NDPR)
Program Officer
Lavaute, Timothy M
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Fred Hutchinson Cancer Research Center
United States
Zip Code
Wang, Liang; Cooper, Jonathan A (2017) Optogenetic control of the Dab1 signaling pathway. Sci Rep 7:43760
Jossin, Yves; Lee, Minhui; Klezovitch, Olga et al. (2017) Llgl1 Connects Cell Polarity with Cell-Cell Adhesion in Embryonic Neural Stem Cells. Dev Cell 41:481-495.e5
Cooper, Jonathan A; Kaneko, Tomonori; Li, Shawn S C (2015) Cell regulation by phosphotyrosine-targeted ubiquitin ligases. Mol Cell Biol 35:1886-97
Cooper, Jonathan A (2014) Molecules and mechanisms that regulate multipolar migration in the intermediate zone. Front Cell Neurosci 8:386
Sinnar, Shamim A; Antoku, Susumu; Saffin, Jean-Michel et al. (2014) Capping protein is essential for cell migration in vivo and for filopodial morphology and dynamics. Mol Biol Cell 25:2152-60
Teckchandani, Anjali; Laszlo, George S; Simó, Sergi et al. (2014) Cullin 5 destabilizes Cas to inhibit Src-dependent cell transformation. J Cell Sci 127:509-20
Cheng, Catherine; Ansari, Moham M; Cooper, Jonathan A et al. (2013) EphA2 and Src regulate equatorial cell morphogenesis during lens development. Development 140:4237-45
Simó, Sergi; Cooper, Jonathan A (2013) Rbx2 regulates neuronal migration through different cullin 5-RING ligase adaptors. Dev Cell 27:399-411
Cooper, Jonathan A (2013) Cell biology in neuroscience: mechanisms of cell migration in the nervous system. J Cell Biol 202:725-34
Simo, Sergi; Cooper, Jonathan A (2012) Regulation of dendritic branching by Cdc42 GAPs. Genes Dev 26:1653-8