Our long-term goal is to understand the molecular basis of a novel morphologically-conserved non-apoptotic developmental cell-death program we uncovered, and to determine its roles in mammalian development and disease. Programmed cell death is a major cell fate. Apoptosis, an extensively studied cell death process, requires caspase proteases and is accompanied by chromatin compaction and cytoplasmic shrinkage. Surprisingly, mice lacking apoptotic effectors survive to adulthood. These observations suggest that non- apoptotic cell death may play key roles in animal development. Although genes promoting necrotic cell death have been described, these are not required for development. Thus, whether alternative developmental cell death pathways exist, and if so, what molecular mechanisms govern their execution, is a major outstanding question. Our studies of the C. elegans linker cell provide direct evidence that caspase-independent non- apoptotic cell death pathways operate during animal development. Linker cell death occurs in the absence of C. elegans caspases, and other apoptosis genes are also not required, nor are genes implicated in autophagy or necrosis. The morphology of a dying linker cell is characterized by lack of chromatin condensation, a crenellated nucleus, and swelling of cytoplasmic organelles. Remarkably, cell death with similar features (linker cell-type death, LCD) also occurs in vertebrates, and is characteristic of neuronal degeneration in polyglutamine diseases. We recently described a pathway governing C. elegans LCD. This is the first such framework for a non-apoptotic developmental cell-death program. LCD is controlled by Wnt signals that function in parallel with a developmental-timing and a MAPKK pathway to control non-canonical activity of HSF-1, a conserved heat-shock transcription factor. let-70/Ube2D2, encoding a conserved E2 ubiquitin- conjugating enzyme, is a key target of HSF-1. The E3 components CUL-3/cullin, RBX-1, and BTBD-2 function with LET-70/UBE2D2 for LCD. LCD pathway components are involved in vertebrate cell-degenerative processes. pqn-41, encoding a self-aggregating glutamine-rich protein, is reminiscent of polyglutamine repeat proteins causing neurodegeneration. tir-1/Sarm as well as the E3 component BTBD-2, promote distal axon degeneration following axotomy in mice, supporting conserved cell dismantling roles. Here we will build on these studies to uncover LCD pathway targets, and study relevance to mammalian development. We will: (1) Investigate how HSF-1 function in LCD differs from its heat-shock response roles. (2) Identify BTBD-2 target genes and assess roles in LCD control. (3) Use our knowledge of the LCD mechanism to investigate its conservation during Mllerian duct degeneration and early embryonic development in the mouse, where cell death is non-apoptotic and morphologically similar to LCD. Our results may contribute to an understanding of cell death processes in human development and disease.

Public Health Relevance

Our long-term goal is to understand how cell death takes place during normal animal development and disease. We uncovered a novel cell death process in the nematode C. elegans with similarities to normal and disease-related cell death in humans, and aim to understand the details of this novel killing mechanism. Our studies may, therefore, provide in-roads towards understanding and, perhaps, treatment of degenerative human diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
2R01NS081490-06
Application #
9383196
Study Section
Neural Oxidative Metabolism and Death Study Section (NOMD)
Program Officer
Miller, Daniel L
Project Start
2012-09-01
Project End
2018-04-30
Budget Start
2017-06-01
Budget End
2018-04-30
Support Year
6
Fiscal Year
2017
Total Cost
Indirect Cost
Name
Rockefeller University
Department
Genetics
Type
Graduate Schools
DUNS #
071037113
City
New York
State
NY
Country
United States
Zip Code
10065
Ghose, Piya; Rashid, Alina; Insley, Peter et al. (2018) EFF-1 fusogen promotes phagosome sealing during cell process clearance in Caenorhabditis elegans. Nat Cell Biol 20:393-399
Kutscher, Lena M; Keil, Wolfgang; Shaham, Shai (2018) RAB-35 and ARF-6 GTPases Mediate Engulfment and Clearance Following Linker Cell-Type Death. Dev Cell 47:222-238.e6
Singhal, Anupriya; Shaham, Shai (2017) Infrared laser-induced gene expression for tracking development and function of single C. elegans embryonic neurons. Nat Commun 8:14100
Keil, Wolfgang; Kutscher, Lena M; Shaham, Shai et al. (2017) Long-Term High-Resolution Imaging of Developing C. elegans Larvae with Microfluidics. Dev Cell 40:202-214
Wang, Wendy; Perens, Elliot A; Oikonomou, Grigorios et al. (2017) IGDB-2, an Ig/FNIII protein, binds the ion channel LGC-34 and controls sensory compartment morphogenesis in C. elegans. Dev Biol 430:105-112
Kutscher, Lena M; Shaham, Shai (2017) Non-apoptotic cell death in animal development. Cell Death Differ 24:1326-1336
Malin, Jennifer A; Kinet, Maxime J; Abraham, Mary C et al. (2016) Transcriptional control of non-apoptotic developmental cell death in C. elegans. Cell Death Differ 23:1985-1994
Lin, Yi-Fan; Schulz, Anna M; Pellegrino, Mark W et al. (2016) Maintenance and propagation of a deleterious mitochondrial genome by the mitochondrial unfolded protein response. Nature 533:416-9
Schwendeman, Andrew R; Shaham, Shai (2016) A High-Throughput Small Molecule Screen for C. elegans Linker Cell Death Inhibitors. PLoS One 11:e0164595
Singhvi, Aakanksha; Liu, Bingqian; Friedman, Christine J et al. (2016) A Glial K/Cl Transporter Controls Neuronal Receptive Ending Shape by Chloride Inhibition of an rGC. Cell 165:936-48

Showing the most recent 10 out of 17 publications