Dendritic spines are essential for integrating excitatory and inhibitory inputs in the central nervous system. The fine structure of the spines, with necks as small as 100 nm and heads as small as 400 nm, allow them to form ultra-structural compartments with localized control of signaling and biochemical microenvironment. The ultra-structure of spines does not readily allow for standard methods of characterization, such as confocal imaging and electrophysiology. Recent progress in two-photon and STED imaging has been essential to resolving structure and location, but obtaining insight to the biochemical environment remains elusive. Our goal is to use a novel Polymer-Free Nanosensors (PFN) combined with 2-photon laser scanning microscopy to characterize the biochemical environment of dendritic spines. Specifically, we propose assessing ion dynamics in the spines, starting with sodium and then easily extending the platform to other ions such as chloride, calcium, and potassium. Since loading nanosensors, even ones as small as 20 nm, through the necks of dendritic spines might prove difficult, we propose developing and characterizing a novel type of nanosensor: a polymer-less formulation that has the mechanical properties of an oil rather than a bead. This would allow us to load PFNs into even small structures, and then monitor fluorescence intensity as a real-time, reversible indicator of analyte concentration. Since the spine neck forms the barrier that diffusionally isolates the synapse, one predicts that these altered morphologies perturb the biochemical and electrical compartmentalization of the synapse and spine. Our proposal will determine the role of the spine neck in shaping synaptically-evoked signals and will set the foundation necessary for revealing the functional consequences of the morphological changes seen in disease states.

Public Health Relevance

Our goal is to use Polymer-Free Nanosensors (PFNs) combined with 2-photon laser scanning microscopy to characterize the biochemical environment of dendritic spines. Our goal will be to probe the role of biochemical environment of the spine neck in shaping synaptically-evoked signals and will set the foundation necessary for revealing the functional consequences of the morphological changes seen in disease states.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
4R01NS081641-04
Application #
9037069
Study Section
Instrumentation and Systems Development Study Section (ISD)
Program Officer
Talley, Edmund M
Project Start
2013-06-01
Project End
2018-03-31
Budget Start
2016-04-01
Budget End
2017-03-31
Support Year
4
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Northeastern University
Department
Pharmacology
Type
Schools of Pharmacy
DUNS #
001423631
City
Boston
State
MA
Country
United States
Zip Code
Kim, Eric H; Chin, Gregory; Rong, Guoxin et al. (2018) Optical Probes for Neurobiological Sensing and Imaging. Acc Chem Res 51:1023-1032
Luo, Yi; Kim, Eric H; Flask, Chris A et al. (2018) Nanosensors for the Chemical Imaging of Acetylcholine Using Magnetic Resonance Imaging. ACS Nano :
Rong, Guoxin; Corrie, Simon R; Clark, Heather A (2017) In Vivo Biosensing: Progress and Perspectives. ACS Sens 2:327-338
Rong, Guoxin; Kim, Eric H; Poskanzer, Kira E et al. (2017) A method for estimating intracellular ion concentration using optical nanosensors and ratiometric imaging. Sci Rep 7:10819
Ruckh, Timothy T; Skipwith, Christopher G; Chang, Wendi et al. (2016) Ion-Switchable Quantum Dot Förster Resonance Energy Transfer Rates in Ratiometric Potassium Sensors. ACS Nano 10:4020-30
Di, Wenjun; Czarny, Ryan S; Fletcher, Nathan A et al. (2016) Comparative Study of Poly (?-Caprolactone) and Poly(Lactic-co-Glycolic Acid) -Based Nanofiber Scaffolds for pH-Sensing. Pharm Res 33:2433-44
Cash, Kevin J; Li, Chiye; Xia, Jun et al. (2015) Optical drug monitoring: photoacoustic imaging of nanosensors to monitor therapeutic lithium in vivo. ACS Nano 9:1692-8
Sahari, Ali; Ruckh, Timothy T; Hutchings, Richard et al. (2015) Development of an Optical Nanosensor Incorporating a pH-Sensitive Quencher Dye for Potassium Imaging. Anal Chem 87:10684-7
Ruckh, Timothy T; Clark, Heather A (2014) Implantable nanosensors: toward continuous physiologic monitoring. Anal Chem 86:1314-23
Awqatty, Becker; Samaddar, Shayak; Cash, Kevin J et al. (2014) Fluorescent sensors for the basic metabolic panel enable measurement with a smart phone device over the physiological range. Analyst 139:5230-8

Showing the most recent 10 out of 11 publications