Hypoxia/reoxygenation (H/R) is a component of several brain diseases such as traumatic brain injury, acute respiratory syndrome, obstructive sleep apnea, high altitude cerebral edema, acute mountain sickness, cardiac arrest and ischemic stroke. The objective of current stroke therapy is to restore perfusion to ischemic brain; however, considerable brain cellular damage and BBB dysfunction occurs when blood flow/oxygen supply is re-established. Therefore, there is a critical need for development of novel treatment strategies that can rescue salvageable brain tissue from damage and/or protect BBB integrity during H/R. In this grant, we will test the hypothesis that organic anion transporting polypeptides (Oatps) and multidrug resistance proteins (Mrps), two families of endogenous BBB transporters, can be targeted for treatment of H/R.
Two specific aims will test this hypothesis.
Aim 1 : To investigate CNS drug delivery mediated by Oatps during H/R. In this aim, we will focus on Oatp1a4, the primary drug transporting Oatp at the rodent BBB. We will investigate, in vivo, Oatp1a4 mediated transport of 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase inhibitors (i.e., statins) (Aim 1A). We will then correlate changes in Oatp1a4-mediated statin transport with indices of neuroprotective and antioxidant efficacy (Aim 1B). Transforming growth factor (TGF-?) signaling regulates Oatp1a4 expression/activity. Therefore, we will evaluate effects of dorsomorphin and SB431542, two TGF-? receptor inhibitors, on BBB functional expression of Oatp1a4 to evaluate targeting of this pathway for control of CNS drug delivery (Aim 1C).
Aim 2 : To evaluate if pharmacological targeting of Mrps at the BBB protects BBB integrity following H/R. Glutathione (GSH), a critical CNS antioxidant, is a substrate for Mrp1, Mrp2, and Mrp4. Therefore, we will study in vivo H/R-induced changes in expression/activity of these Mrps at the BBB (Aim 2A). We will then examine changes in GSH and its oxidized form GSH disulfide (GSSG) at the BBB resulting from alterations in GSH transport systems and enzymes (Aim 2B). We will evaluate regulation of Mrps and GSH synthetic/metabolic enzymes at the BBB by nuclear factor erythroid 2-related factor 2 (Nrf2) signaling (Aim 2C). Since Nrf2 signaling is activated by oxidative stress, our studies will be conducted in the presence and absence of the reactive oxygen species (ROS) scavenger TEMPOL (i.e., 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl) to determine if therapeutic targeting of oxidative stress can control BBB Mrp-mediated transport. Our goal in this grant is to facilitate discovery of novel approaches for treating diseases with an H/R component by therapeutic targeting of endogenous transporters at the BBB.

Public Health Relevance

Treatment of brain diseases with a hypoxia/reoxygenation component requires delivery of drugs to attain effective levels in the brain and/or prevention of loss of the brain's natural antioxidants. Transporters are critical to the function of the blood-brin barrier (BBB) by precisely determining the levels of drugs and antioxidants in the brain. This grant proposal will directly impact public health in the United States by targeting BBB transporters for control of brain drug delivery and antioxidant transport, thereby facilitating discovery of new approaches to treat diseases with a hypoxia/reoxygenation component.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS084941-04
Application #
9285882
Study Section
Brain Injury and Neurovascular Pathologies Study Section (BINP)
Program Officer
Bosetti, Francesca
Project Start
2014-07-01
Project End
2019-06-30
Budget Start
2017-07-01
Budget End
2018-06-30
Support Year
4
Fiscal Year
2017
Total Cost
Indirect Cost
Name
University of Arizona
Department
Pharmacology
Type
Schools of Medicine
DUNS #
806345617
City
Tucson
State
AZ
Country
United States
Zip Code
85721
Yang, Junzhi; Reilly, Bianca G; Davis, Thomas P et al. (2018) Modulation of Opioid Transport at the Blood-Brain Barrier by Altered ATP-Binding Cassette (ABC) Transporter Expression and Activity. Pharmaceutics 10:
Abdullahi, Wazir; Brzica, Hrvoje; Hirsch, Nicholas A et al. (2018) Functional Expression of Organic Anion Transporting Polypeptide 1a4 Is Regulated by Transforming Growth Factor-?/Activin Receptor-like Kinase 1 Signaling at the Blood-Brain Barrier. Mol Pharmacol 94:1321-1333
Brzica, Hrvoje; Abdullahi, Wazir; Reilly, Bianca G et al. (2018) Sex-specific differences in organic anion transporting polypeptide 1a4 (Oatp1a4) functional expression at the blood-brain barrier in Sprague-Dawley rats. Fluids Barriers CNS 15:25
Abdullahi, Wazir; Tripathi, Dinesh; Ronaldson, Patrick T (2018) Blood-brain barrier dysfunction in ischemic stroke: targeting tight junctions and transporters for vascular protection. Am J Physiol Cell Physiol 315:C343-C356
Brzica, Hrvoje; Abdullahi, Wazir; Reilly, Bianca G et al. (2018) A Simple and Reproducible Method to Prepare Membrane Samples from Freshly Isolated Rat Brain Microvessels. J Vis Exp :
Abdullahi, Wazir; Brzica, Hrvoje; Ibbotson, Kathryn et al. (2017) Bone morphogenetic protein-9 increases the functional expression of organic anion transporting polypeptide 1a4 at the blood-brain barrier via the activin receptor-like kinase-1 receptor. J Cereb Blood Flow Metab 37:2340-2345
Brzica, Hrvoje; Abdullahi, Wazir; Ibbotson, Kathryn et al. (2017) Role of Transporters in Central Nervous System Drug Delivery and Blood-Brain Barrier Protection: Relevance to Treatment of Stroke. J Cent Nerv Syst Dis 9:1179573517693802
Abdullahi, Wazir; Davis, Thomas P; Ronaldson, Patrick T (2017) Functional Expression of P-glycoprotein and Organic Anion Transporting Polypeptides at the Blood-Brain Barrier: Understanding Transport Mechanisms for Improved CNS Drug Delivery? AAPS J 19:931-939
Ibbotson, Kathryn; Yell, Joshua; Ronaldson, Patrick T (2017) Nrf2 signaling increases expression of ATP-binding cassette subfamily C mRNA transcripts at the blood-brain barrier following hypoxia-reoxygenation stress. Fluids Barriers CNS 14:6
Lochhead, Jeffrey J; Ronaldson, Patrick T; Davis, Thomas P (2017) Hypoxic Stress and Inflammatory Pain Disrupt Blood-Brain Barrier Tight Junctions: Implications for Drug Delivery to the Central Nervous System. AAPS J 19:910-920

Showing the most recent 10 out of 13 publications