Protein misfolding arises in many neurodegenerative diseases. The mechanisms by which protein misfolding causes cell death and disease are poorly understood. The broad, long-term research objectives are: 1) to decipher the cellular, molecular, and genetic mechanisms that cause neurodegeneration, and 2) to develop new therapies to prevent and treat neurodegenerative diseases through correction of cellular protein misfolding in people. The Unfolded Protein Response (UPR) is a conserved intracellular signal transduction mechanism essential for cellular protein homeostasis. The UPR activates transcriptional programs that induce chaperones, protein folding enzymes, and protein degradation pathways (proteasome and autophagy). The UPR also regulates the speed of translation to match the amount of newly synthesized polypeptides to cellular protein folding capacity. If protein misfolding persists, the UPR triggers apoptosis. The UPR may be a potential pathomechanism underlying diseases arising from protein misfolding. PERK encodes a serine/threonine kinase that regulates the UPR. In people, GWAS identified PERK as a genetic risk factor for the tauopathy neurodegenerative disease, Progressive Supranuclear Palsy (PSP). This research investigates how PERK causes PSP in these Specific Aims.
Aim 1 will investigate PERK's role in mediating neurodegeneration caused by environmental chemical toxins that increase risk of tauopathy. PERK activity will be assessed in human stem cell-derived neurons treated with PSP-linked agents. Small molecule proteostasis agents will be tested for their efficacy in rescuing neuronal damage linked to environment agents.
Aim 2 will analyze the enzymatic properties of PERK heterodimers compared to homodimers. Isogenic stem cell-derived neurons will be employed. In parallel, recombinant PERK heterodimers will be generated and characterized using small molecule heterodimerizering compounds.
Aim 3 will investigate the molecular and biochemical basis for selective tau neuropathology in the brain. Postmortem human brain tissues from vulnerable and resistant brain regions will be compared for UPR activity. Genotyped brain cases will be examined to see how risk PERK allele expression affects tau neuropathology. PERK is an essential regulator of protein quality in cells, and human PERK alleles are genetic risk factors for tauopathy neurodegeneration. These studies will have a positive impact by elucidating fundamental molecular pathomechanisms of PERK signaling in PSP. These studies may also reduce the clinical burden of PSP and related tauopathy neurodegenerative diseases by development of novel therapeutic strategies based on pharmacologic regulation of cellular protein quality homeostasis.

Public Health Relevance

Protein misfolding is a key pathology in neurodegenerative diseases. This research will elucidate fundamental molecular and genetic mechanisms that cause neurodegeneration. This research may identify new ways to prevent neurodegenerative diseases by improving cellular protein quality.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
2R01NS088485-06
Application #
9972458
Study Section
Cellular and Molecular Biology of Neurodegeneration Study Section (CMND)
Program Officer
Gubitz, Amelie
Project Start
2015-02-01
Project End
2025-05-31
Budget Start
2020-06-01
Budget End
2021-05-31
Support Year
6
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Palo Alto Veterans Institute for Research
Department
Type
DUNS #
624218814
City
Palo Alto
State
CA
Country
United States
Zip Code
94304
Yuan, Shauna H; Hiramatsu, Nobuhiko; Liu, Qing et al. (2018) Tauopathy-associated PERK alleles are functional hypomorphs that increase neuronal vulnerability to ER stress. Hum Mol Genet 27:3951-3963
Kroeger, Heike; Grimsey, Neil; Paxman, Ryan et al. (2018) The unfolded protein response regulator ATF6 promotes mesodermal differentiation. Sci Signal 11:
OrrĂ¹, Christina D; Soldau, Katrin; Cordano, Christian et al. (2018) Prion Seeds Distribute throughout the Eyes of Sporadic Creutzfeldt-Jakob Disease Patients. MBio 9:
Chiang, Wei-Chieh; Chan, Priscilla; Wissinger, Bernd et al. (2017) Achromatopsia mutations target sequential steps of ATF6 activation. Proc Natl Acad Sci U S A 114:400-405
Rodvold, Jeffrey J; Chiu, Kevin T; Hiramatsu, Nobuhiko et al. (2017) Intercellular transmission of the unfolded protein response promotes survival and drug resistance in cancer cells. Sci Signal 10:
Chan, Priscilla; Stolz, Julia; Kohl, Susanne et al. (2016) Endoplasmic reticulum stress in human photoreceptor diseases. Brain Res 1648:538-541
Chiang, Wei-Chieh; Joseph, Victory; Yasumura, Douglas et al. (2016) Ablation of Chop Transiently Enhances Photoreceptor Survival but Does Not Prevent Retinal Degeneration in Transgenic Mice Expressing Human P23H Rhodopsin. Adv Exp Med Biol 854:185-91
Kohl, Susanne; Zobor, Ditta; Chiang, Wei-Chieh et al. (2015) Mutations in the unfolded protein response regulator ATF6 cause the cone dysfunction disorder achromatopsia. Nat Genet 47:757-65
Chiang, Wei-Chieh; Kroeger, Heike; Sakami, Sanae et al. (2015) Robust Endoplasmic Reticulum-Associated Degradation of Rhodopsin Precedes Retinal Degeneration. Mol Neurobiol 52:679-95
Alavi, Marcel V; Chiang, Wei-Chieh; Kroeger, Heike et al. (2015) In Vivo Visualization of Endoplasmic Reticulum Stress in the Retina Using the ERAI Reporter Mouse. Invest Ophthalmol Vis Sci 56:6961-70

Showing the most recent 10 out of 11 publications