Reactive oxygen species (ROS) contribute to pathology, but conversely, in limited measure they can also act as second messengers, whereby they contribute to beneficial cellular signaling. Similar to calcium signaling or other second messengers, the precise location, timing, and duration of ROS production likely determine divergent signaling outputs. The mechanism underlying this functional dichotomy in redox biology is currently under studied. An intriguing example of an apparent paradoxical impact of ROS occurs at complex I of the mitochondrial electron transport chain. In the case of detrimental effects of oxidation, mitochondrial complex I ROS production is mechanistically linked to oxidative damage in ischemia reperfusion (IR) injury, the pathology of stroke. In the case of beneficial signaling, complex I ROS production is implicated in protective hypoxic signaling. Indeed, the fact that some ROS production is a normal consequence of mitochondrial respiration supports the idea that ROS contribute to normal physiology. Therefore, describing the nuances of complex I ROS production and its context- dependent metabolic effects is necessary to fully determine the mechanisms of mitochondrial redox signaling, both damaging and physiologic. To achieve that goal, precise experimental control of ROS production is required. Until recently, controlling ROS production as an independent variable has been difficult. This renewal leverages an optogenetic approach championed by our lab to overcome this barrier, and isolates ROS production at complex I in the genetic model organism C. elegans. Previously, we have shown that ROS production at the complex II microdomain differentially affects redox-sensitive outcomes in models of IR injury, depending on whether the ROS were produced inside the mitochondrial matrix or in the intermembrane space. Using our published novel CRISPR/Cas9 technology optimized for rapid use in C. elegans, we will target well-characterized light-activated ROS generating proteins (RGPs) to endogenous complex I in order to precisely control the location, timing, and duration of complex I ROS production with light. This will provide a model of either complex I redox signaling, or oxidative damage, depending on the light-titration of RGP activation, where more light will produce more ROS. Combined with tissue-specific expression, we will determine the effects of each of these spatiotemporal parameters on normal mitochondrial function, neuronal function, and stress-resistance signaling programs in response to simulated IR injury. We will focus on the neuronal outcomes of complex I ROS production, both in response to strong literature support for the importance of neurons in mediating hypoxic stress signaling, and to determine neuronal circuits that could be targeted for translation to mammalian models of stroke. This approach is perfectly suited to the powerful C. elegans genetic system. We expect that completion of our aims will provide novel, fundamental insights with clear answers to questions about how the mitochondrial complex I ROS microdomain controls diverse outcomes in both disease and physiology.

Public Health Relevance

Mitochondrial complex I reactive oxygen species (ROS) production is causally linked to damage in ischemia reperfusion injury, the driving pathology of stroke. Complex I ROS production can also trigger endogenous protective signaling processes, however, and the precise mechanisms governing the physiologic versus the pathologic events are unknown and under studied. We propose to define the mechanisms underlying the apparent duality of ROS by taking unprecedented control of complex I ROS production at a fundamental level to reveal potential mechanisms of damage and recovery in hypoxic pathology.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Research Project (R01)
Project #
Application #
Study Section
Neural Oxidative Metabolism and Death Study Section (NOMD)
Program Officer
Bosetti, Francesca
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Rochester
School of Medicine & Dentistry
United States
Zip Code
Trewin, Adam J; Berry, Brandon J; Wei, Alicia Y et al. (2018) Light-induced oxidant production by fluorescent proteins. Free Radic Biol Med 128:157-164
Trewin, Adam J; Berry, Brandon J; Wojtovich, Andrew P (2018) Exercise and Mitochondrial Dynamics: Keeping in Shape with ROS and AMPK. Antioxidants (Basel) 7:
Barnett, Miriam E; Baran, Timothy M; Foster, Thomas H et al. (2018) Quantification of light-induced miniSOG superoxide production using the selective marker, 2-hydroxyethidium. Free Radic Biol Med 116:134-140
Berry, Brandon J; Trewin, Adam J; Amitrano, Andrea M et al. (2018) Use the Protonmotive Force: Mitochondrial Uncoupling and Reactive Oxygen Species. J Mol Biol 430:3873-3891
Wojtovich, Andrew P; Smith, C Owen; Urciuoli, William R et al. (2016) Cardiac Slo2.1 Is Required for Volatile Anesthetic Stimulation of K+ Transport and Anesthetic Preconditioning. Anesthesiology 124:1065-76
Wojtovich, Andrew P; Wei, Alicia Y; Sherman, Teresa A et al. (2016) Chromophore-Assisted Light Inactivation of Mitochondrial Electron Transport Chain Complex II in Caenorhabditis elegans. Sci Rep 6:29695
Stoveken, Hannah M; Bahr, Laura L; Anders, M W et al. (2016) Dihydromunduletone Is a Small-Molecule Selective Adhesion G Protein-Coupled Receptor Antagonist. Mol Pharmacol 90:214-24