Alzheimer disease (AD) is the most common cause of dementia and is characterized by extracellular plaques formed by the deposition of amyloid-? (A?) peptide and intracellular tangles comprised of hyperphosphorylated forms of the tau protein. Another common pathology in AD is cerebral amyloid angiopathy (CAA), caused by A? deposition in the walls of cerebral vessels leading to vascular dysfunction and hemorrhage. The strongest genetic risk factor for both AD and CAA is ?4 allele of the apolipoprotein E (APOE) gene, but multiple recent genome-wide association studies have proven that a similar apolipoprotein, Clusterin (CLU), also confers risk for AD. The role of CLU in CAA is unknown, but we have strong evidence that CLU is critically involved in the formation of CAA. While much is known about apoE receptor biology, the only known receptor for Clu, LRP2/Megalin, is very poorly expressed in the adult brain, suggesting other receptors are present but undiscovered. We have found that Plexin A4 (PLXNA4) is a novel receptor that regulates the levels of extracellular CLU in mice and in humans. PLXNA4 levels are significantly decreased in mouse models of AD as well as human AD brain tissue compared to controls. The objective of this proposal is to define how CLU regulates A? metabolism and deposition in brain parenchyma and cerebrovasculature. Using a combination of cell culture, biochemistry, mouse genetics, pharmacology, and pathologically defined human tissue, we will determine how the CLU and PLXNA4 affect AD by studying functional endpoints such as histopathology, vascular dysfunction, neuritic dystrophy, electrophysiology, and behavior. Deciphering this pathway could lead to new therapeutic targets not only for AD, but also for stroke and breast cancer, given the emerging role of CLU in those respective fields.

Public Health Relevance

Alzheimer disease is characterized by the buildup of protein deposits in the brain termed 'amyloid plaques.' These plaques can form around neurons or within the vessels and are extremely toxic to both. In this project, we will explore new molecular pathways that may explain exactly how these amyloid plaques form.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS094137-03
Application #
9330937
Study Section
Cell Death in Neurodegeneration Study Section (CDIN)
Program Officer
Corriveau, Roderick A
Project Start
2015-09-30
Project End
2020-08-31
Budget Start
2017-09-01
Budget End
2018-08-31
Support Year
3
Fiscal Year
2017
Total Cost
Indirect Cost
Name
Mayo Clinic Jacksonville
Department
Type
DUNS #
153223151
City
Jacksonville
State
FL
Country
United States
Zip Code
32224
Kang, S S; Ren, Y; Liu, C-C et al. (2018) Lipocalin-2 protects the brain during inflammatory conditions. Mol Psychiatry 23:344-350
Kang, Silvia S; Ebbert, Mark T W; Baker, Kelsey E et al. (2018) Microglial translational profiling reveals a convergent APOE pathway from aging, amyloid, and tau. J Exp Med 215:2235-2245
Ebbert, Mark T W; Farrugia, Stefan L; Sens, Jonathon P et al. (2018) Long-read sequencing across the C9orf72 'GGGGCC' repeat expansion: implications for clinical use and genetic discovery efforts in human disease. Mol Neurodegener 13:46
Wojtas, Aleksandra M; Kang, Silvia S; Olley, Benjamin M et al. (2017) Loss of clusterin shifts amyloid deposition to the cerebrovasculature via disruption of perivascular drainage pathways. Proc Natl Acad Sci U S A 114:E6962-E6971
Kang, Silvia S; Kurti, Aishe; Wojtas, Aleksandra et al. (2016) Identification of plexin A4 as a novel clusterin receptor links two Alzheimer's disease risk genes. Hum Mol Genet 25:3467-3475
Shinohara, Mitsuru; Murray, Melissa E; Frank, Ryan D et al. (2016) Impact of sex and APOE4 on cerebral amyloid angiopathy in Alzheimer's disease. Acta Neuropathol 132:225-34