In a rodent model of cervical spinal cord injury (SCI), we propose to examine the contribution of altered EphB2 receptor-NMDA receptor (NMDAR) interaction to both excitatory synaptic neurotransmission in the superficial dorsal horn (DH) and persistent neuropathic pain (NP). The development of NP occurs in a significant portion of individuals affected by SCI, resulting in debilitating and often chronic physical and psychological burdens. Importantly, this pathological pain is particularly refractory to treatment, urgently calling for the identification of mechanistic targets that both robustly regulate pathological pain and avoid the devastating effects of opioid- based interventions. Hyperexcitability of DH circuitry (?central sensitization?) is a major substrate for NP after SCI. Studies have shown that NP is linked to EphB/ephrinB signaling through potentiation of NMDAR function, suggesting that the EphB-NMDAR interaction may be an important target for control of SCI-induced NP. We recently discovered that the EphB2-NMDAR interaction is regulated by a single extracellular amino acid of EphB2 (Y504). We demonstrated in vitro that EphB2-Y504 phosphorylation is required in spinal cord neurons for EphB-NMDAR interaction, NMDAR synaptic localization, and excitatory synapse function. We also found that transduction of DH neurons in vivo with EphB2 that constitutively interacts with the NMDAR results in long- lasting allodynia. We hypothesize that modulating the EphB2-NMDAR interaction in superficial dorsal horn (DH) neurons will impact synaptic localization and function of NMDARs, excitatory synaptic transmission between primary sensory afferents and DH neurons, and NP-related behaviors after cervical contusion SCI.
Aim 1. Determine whether interaction with EphB2 drives NMDA receptors to synapses between primary nociceptive afferents and superficial DH neurons following cervical SCI. We will determine whether knocking down EphB2 in both uninjured and cervical contusion SCI mice using DH neuron subtype- specific expression of EphB2-shRNA reduces the localization of NMDAR subunits to excitatory synapses.
Aim 2. Determine whether EphB2 regulates excitatory synaptic transmission in DH and NP-related behaviors after cervical SCI. We will determine whether DH neuron subtype-specific knockdown of EphB2 impacts: (2a) synaptic transmission between primary afferents and laminae I-II neurons using whole-cell patch clamp recording in an intact ex vivo preparation; and (2b) initiation and/or persistence of NP-related behaviors.
Aim 3. Determine whether EphB2-Y504 phosphorylation regulates EphB2-NMDAR synaptic interaction in the DH and NP-related behaviors after cervical SCI. By expressing wild-type EphB2-Y504 or constitutively-phosphorylated (Y504E) or non-phosphorylatable (Y504F) mutants in a DH neuron subtype- specific manner, we will determine whether modulating EphB2-Y504 phosphorylation impacts: (3a) EphB2- NMDAR interaction, (3a) NMDAR levels at excitatory synapses, (3c) excitatory synaptic transmission between primary sensory afferents and DH neurons, and (3d) NP-related behaviors after cervical contusion SCI.

Public Health Relevance

The NMDA receptor (NMDAR) is key to pain plasticity, yet we lack effective therapies for targeting NMDAR contribution to chronic pain. Our project will explore a novel mechanism that modulates NMDAR function and targets the extracellular domain of this receptor. The project will: (1) test the hypothesis that extracellular phosphorylation of EphBs controls NMDAR clustering and function at synapses, (2) examine the molecular mechanisms that govern these events, and (3) determine the impact of these events in animal models of spinal cord injury-induced neuropathic pain.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Research Project (R01)
Project #
Application #
Study Section
Clinical Neuroplasticity and Neurotransmitters Study Section (CNNT)
Program Officer
Mohapatra, Durga Prasanna
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Thomas Jefferson University
Schools of Medicine
United States
Zip Code