Despitethe long-termpromise of stem-cell and otherbiological approaches, currentoptionsto improve function following spinal cord injury (SCI) remain quite limited. However, brain machine interfaces (BMIs) that use cortical activity to drive functional electrical stimulation (FES) of muscles or the spinal cord have great promise not only for the restoration of motor ability when using the BMI, but also for improved functional rehabilitationsothattheirperformanceisimprovedwhentheBMIisremoved.Theoverallgoalofourresearch istoidentifystrategiesthatmaximizebothofthesepotentialstrengthsofcortically-controlledFES. Asystemusingcorticalactivitytodrivestimulationofindividualmusclesmightmaximizetherestoration ofmotorfunction:byenablinguserstovarytheamplitudeandtimingofindividualmuscles,movementscan potentiallybeadaptedasnecessarytoachievetaskdemands.Alternatestrategiesofproducingmovement, suchasactivationofmusclegroupsorofsitesinthespinalcordproducinglimbflexionorextension,will reducetherangeofpossiblemovements.AlthoughthesestrategiesmightbesimplertolearnafterSCIthan controlofindividualmuscles,theyclearlylimitthelevelofmotorfunctionthatcanberestored. Inordertoachievethegreatestfunctionalrehabilitation,however,spinalstimulationmightbeamore promisingstrategythanmusclestimulation.Repeatedspinalstimulationmightmaintainthefunctionofspinal pathwaysinvolvedintheproductionofmovementandenablerestorationofconnectionsfromdescending systemsthroughassociativeplasticity.Conversely,sincemusclestimulationdoesnotactivatespinalpathways toproducemovement,itmightproducelessfunctionalrehabilitation. Thereisthereforeapotentialtradeoffbetweenmuscleandspinalstimulation:musclestimulationenables high levels of motor ability but might limit functional rehabilitation, while spinal stimulation might enhance rehabilitation but limit flexibility. Our research will investigate this tradeoff, with the goal of designing a hybrid system that combines spinaland muscle stimulation toachievehigh levels of both motor ability and functional rehabilitation. We will perform these experiments in rats, implanting electrodes in the cortex to record neural activity and in the spinal cord and muscles to produce movements. We will then train rats to use these systems after SCI,evaluating whether they can improve motorabilityand functional rehabilitation.
In Aim1, wewill evaluate whetheranimalscanproducehighlevelsofmotorabilitywithasystemusingcorticalactivitytocontrolactivation of individual muscles.
In Aim 2, we will evaluate whether animals using cortical activity to control activation of spinalstimulationhavebetterfunctionalrehabilitation.Finally,inAim3wewillevaluatewhetherahybridsystem that controls activation of both muscle and spinal stimulation, exploits the advantages of each approach to producemovement,resultinginhighlevelsofbothmotorabilityandoffunctionalrehabilitation.

Public Health Relevance

Theexperimentsinthisproposalwillworktooptimizeanovelsystemforimprovingmotor functioninpeoplewithspinalcordinjury.Thissystemusestheactivityofneuronsinthebrainto estimatethemovementpeopleintendtomake,thenproducethismovementbyactivating musclesintheperson?sownlimb.Wewillidentifydesignsthatmaximizethefunctional improvementsproducedbythissystem.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
1R01NS112535-01
Application #
9801577
Study Section
Motor Function, Speech and Rehabilitation Study Section (MFSR)
Program Officer
Bambrick, Linda Louise
Project Start
2019-07-01
Project End
2024-04-30
Budget Start
2019-07-01
Budget End
2020-04-30
Support Year
1
Fiscal Year
2019
Total Cost
Indirect Cost
Name
Northwestern University at Chicago
Department
Physiology
Type
Schools of Medicine
DUNS #
005436803
City
Chicago
State
IL
Country
United States
Zip Code
60611