Multiple recent studies have provided proof-of-concept that a ?functional cure? of HIV-1 infection, i.e. long-term control of HIV without continued treatment, is achievable. The VISCONTI study identified 14 HIV+ patients, who received antiretroviral treatment (ART) during primary HIV-1 infection, and maintained post-treatment control (PTC) of their virus below the limit of detection for a median of 89 months after stopping therapy. The CHAMP (Control of HIV after Antiretroviral Medication Pause) study has identified 67 post-treatment controllers from 14 treatment interruption studies involving more than 700 participants. To determine why some individuals control HIV to undetectable or low levels after treatment discontinuation, we need a better understanding of the factors that lead to establishment of viral reservoirs, that determine its size, the dynamics of its maintenance and its reactivation possibly leading to viral rebound after treatment cessation. Here we propose to develop a set of new models to help understand the factors that led to functional cure in the studies mentioned above and to understand more generally how functional cure can be achieved. We will collaborate with leading experimental scientists, who will provide novel datasets allowing us to fulfil the following specific aims.
Aim 1. To understand the mechanism of HIV latent reservoir establishment and the factors determining the rate of reservoir seeding during acute infection. We will develop mechanistic models of early reservoir establishment. We will test these models against rich datasets collected by collaborators and estimate key parameter values to accurately describe the dynamics of reservoir establishment. With the insights gained, we will extend the model to interpret recent data39 on the seeding, turnover and the genetic composition of the reservoir.
Aim 2. To understand in quantitative detail the factors that determine the duration of post-treatment control after ART interruption. We will study new models that account for patient specific factors such as the ART regime and the level of cell-associated RNA at the time of ATI in predicting time to viral rebound after ATI. When the time to rebound is long, we aim to elucidate new factors such as a time-dependent rate of reservoir reactivation or immune control that lead to prolonged PTC.
Aim 3. Using insights gained from mathematical modeling to propel the cure agenda for HBV. We will leverage previous modeling successes of HIV and HCV infection to develop a new generation of models of HBV infection and study the effects of different therapies singly and in combination.

Public Health Relevance

Even with better and simpler treatments HIV-1 is still a life-long infection for millions of people. The major barrier to cure is the latent reservoir. Here we will study multiple datasets and develop mechanistic models to understand how the reservoir is established and maintained. We will also examine patient specific factors that determine the time after therapy discontinuation that virus rebounds or is controlled. We also will model the effects of new treatments for hepatitis B infection, another viral illness in which current therapy is generally life-long, and for which novel approaches may lead to functional cure.

Agency
National Institute of Health (NIH)
Institute
Office of The Director, National Institutes of Health (OD)
Type
Research Project (R01)
Project #
5R01OD011095-28
Application #
10076869
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Vonkollmar, Desiree
Project Start
2019-12-23
Project End
2024-11-30
Budget Start
2020-12-01
Budget End
2021-11-30
Support Year
28
Fiscal Year
2021
Total Cost
Indirect Cost
Name
Triad National Security, LLC
Department
Type
DUNS #
080961356
City
Los Alamos
State
NM
Country
United States
Zip Code
87545
Quintela, Barbara de M; Conway, Jessica M; Hyman, James M et al. (2018) A New Age-Structured Multiscale Model of the Hepatitis C Virus Life-Cycle During Infection and Therapy With Direct-Acting Antiviral Agents. Front Microbiol 9:601
Perelson, Alan S; Ribeiro, Ruy M (2018) Introduction to modeling viral infections and immunity. Immunol Rev 285:5-8
Cao, Youfang; Lei, Xue; Ribeiro, Ruy M et al. (2018) Probabilistic control of HIV latency and transactivation by the Tat gene circuit. Proc Natl Acad Sci U S A 115:12453-12458
Goyal, Ashish; Romero-Severson, Ethan Obie (2018) Screening for hepatitis D and PEG-Interferon over Tenofovir enhance general hepatitis control efforts in Brazil. PLoS One 13:e0203831
Ishida, Yuji; Chung, Tje Lin; Imamura, Michio et al. (2018) Acute hepatitis B virus infection in humanized chimeric mice has multiphasic viral kinetics. Hepatology 68:473-484
Canini, Laetitia; Lemenuel-Diot, Annabelle; Brennan, Barbara J et al. (2018) A pharmacokinetic/viral kinetic model to evaluate treatment of chronic HCV infection with a non-nucleoside polymerase inhibitor. Antivir Ther 23:353-361
Best, Katharine; Perelson, Alan S (2018) Mathematical modeling of within-host Zika virus dynamics. Immunol Rev 285:81-96
Ke, Ruian; Li, Hui; Wang, Shuyi et al. (2018) Superinfection and cure of infected cells as mechanisms for hepatitis C virus adaptation and persistence. Proc Natl Acad Sci U S A 115:E7139-E7148
Ke, Ruian; Conway, Jessica M; Margolis, David M et al. (2018) Determinants of the efficacy of HIV latency-reversing agents and implications for drug and treatment design. JCI Insight 3:
Aunins, Thomas R; Marsh, Katherine A; Subramanya, Gitanjali et al. (2018) Intracellular Hepatitis C Virus Modeling Predicts Infection Dynamics and Viral Protein Mechanisms. J Virol 92:

Showing the most recent 10 out of 131 publications