Arginine deiminase is an enzyme that plays an essential role in energy production of bacteria and primitive protozoa. Since its gene is absent in the human genome, it is an attractive target for developing novel antibacterial and antiparasitic drugs. Inhibition of the enzyme might also have biodefense implications concerning a category B pathogen Giardia intestinalis. The recent advances in both enzyme kinetics and structural determination have revealed a unique catalytic scaffold consisting of several well organized charged and polar residues. Superficially similar to cysteine protease, arginine deiminase has a conserved Cys-His-Glu triad and uses Cys in covalent catalysis. However, the drastically different arrangement of the three key residues in the active site of this enzyme suggests a completely different nucleophile activation scheme, which might involve the substrate. In this application, we present a detailed and self-contained research plan for understanding both the catalytic mechanism of arginine deiminase and its inhibition. In particular, we propose to calculate reaction paths and free energy barriers for both the nucleophilic substitution and hydrolysis partial reactions catalyzed by the enzyme, using high level quantum mechanical/molecular mechanical (QM/MM) methods. The proposed research is unique in that the computational work will be closely coupled with experimental studies of the same enzyme. Simulations of the enzymatic reaction will be based on experimental structures while theoretical predictions will in turn provide guidance to further experimental investigations. If successful, this exploratory project will evolve into a comprehensive study of the arginine deiminase superfamily, whose members use the same catalytic strategy in modifying the guanidino group in arginine derivatives. The members of the superfamily, such as dimethylarginine dimethylaminohydrolase and peptidyl-arginine deiminase, are involved in many important human diseases such as cancer, stroke, rheumatoid arthritis, and multiple sclerosis. Hence, the fundamental research proposed here also has potential practical applications.

Public Health Relevance

The research proposed here is aimed at the elucidation of the catalytic mechanism of arginine deiminase, which may help designing new antibacterial and antiparasitic drugs.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Small Research Grants (R03)
Project #
1R03AI071992-01A2
Application #
7470468
Study Section
Macromolecular Structure and Function E Study Section (MSFE)
Program Officer
Rogers, Martin J
Project Start
2009-05-05
Project End
2011-04-30
Budget Start
2009-05-05
Budget End
2010-04-30
Support Year
1
Fiscal Year
2009
Total Cost
$75,000
Indirect Cost
Name
University of New Mexico
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
868853094
City
Albuquerque
State
NM
Country
United States
Zip Code
87131
Wang, Xuemei; Wu, Shanshan; Xu, Dingguo et al. (2011) Inhibitor and substrate binding by angiotensin-converting enzyme: quantum mechanical/molecular mechanical molecular dynamics studies. J Chem Inf Model 51:1074-82
Ke, Zhihong; Guo, Hua; Xie, Daiqian et al. (2011) Ab initio QM/MM free-energy studies of arginine deiminase catalysis: the protonation state of the Cys nucleophile. J Phys Chem B 115:3725-33
Wu, Shanshan; Zhang, Chunchun; Cao, Ruyin et al. (2011) pH-Dependent reactivity for glycyl-L-tyrosine in carboxypeptidase-A-catalyzed hydrolysis. J Phys Chem B 115:10360-7
Ke, Zhihong; Smith, Gregory K; Zhang, Yingkai et al. (2011) Molecular mechanism for eliminylation, a newly discovered post-translational modification. J Am Chem Soc 133:11103-5
Johnson, Corey M; Monzingo, Arthur F; Ke, Zhihong et al. (2011) On the mechanism of dimethylarginine dimethylaminohydrolase inactivation by 4-halopyridines. J Am Chem Soc 133:10951-9
Wu, Shanshan; Xu, Dingguo; Guo, Hua (2010) QM/MM studies of monozinc ?-lactamase CphA suggest that the crystal structure of an enzyme-intermediate complex represents a minor pathway. J Am Chem Soc 132:17986-8
Wu, Shanshan; Zhang, Chunchun; Xu, Dingguo et al. (2010) Catalysis of carboxypeptidase A: promoted-water versus nucleophilic pathways. J Phys Chem B 114:9259-67
Xu, Dingguo; Guo, Hua (2009) Quantum mechanical/molecular mechanical and density functional theory studies of a prototypical zinc peptidase (carboxypeptidase A) suggest a general acid-general base mechanism. J Am Chem Soc 131:9780-8
Smith, Gregory K; Ke, Zhihong; Hengge, Alvan C et al. (2009) Active-site dynamics of SpvC virulence factor from Salmonella typhimurium and density functional theory study of phosphothreonine lyase catalysis. J Phys Chem B 113:15327-33