The regeneration of damaged or diseased skeletal tissues remains a significant clinical challenge and cause for human disability and discomfort. Tissue engineering and regenerative medicine are emerging as promising strategies for treating these conditions by creating living tissue substitutes composed of cells, bioactive factors, and a biodegradable scaffold. Tissue engineering has been particularly successful in creating uniform tissues, such as skin and cartilage. However, many injuries and diseases affect the interfaces between tissues, such as the transition between bone and cartilage. New tissue engineering methods need to be developed to recapitulate the structure and function of these biphasic tissue interfaces. This project develops a method to deliver bioactive factors to cells in a precise spatial pattern within a three dimensional scaffold. As a result, stem cells seeded onto these scaffolds will be stimulated to produce different tissue types in predefined patterns. In particular, we will generate osteochondral tissues with human mesenchymal stem cells through spatially controlled gene transfer of differentiation factors. Precise spatial control will be enabled by innovative methods of biomaterial-mediated gene delivery and a microscale weaving technique for creating 3D polymer scaffolds. This work is significant to developing tissue engineering strategies for creating complex structures that recapitulate the heterogeneity and function of native tissue interfaces.
Inadequate implant materials for healing or replacing diseased or damaged orthopedic tissues are a leading cause of pain and suffering in the United States. This work is focused on developing enhanced methods for engineering living tissues with superior biological properties and complex architectures that more closely mimic natural tissues. This will result in the ability to create living tissues that alleviate human suffering, discomfort, and disability.
Showing the most recent 10 out of 13 publications