Arthritis affects 50 million U.S. adults (most of whom are aged <65 years) with costs of $128 billion annually, and continues to be the most common cause of disability in the United States. By 2030, an estimated 67 million adults (one in four) are expected to be affected by arthritis. In severe cases, total hip replacements (THR) are accepted as a cost-effective and clinically successful intervention. A well functioning THR should be one that is durable (lasting for the duration of the patient's life) and enables the suffering patient o continue a normal life with minimum side effects on the host body. Currently, the average life span of a THR is estimated at 15 years most likely followed by multiple revision surgeries, particularly in the case of younger patients. One of the major concerns for metal-based hip implants is the loosening and subsequent failure of the femoral stem at the modular junction. The modular junction has been of serious concerns because of the coupled action of mechanical micro-motions (fretting) and the contact of two metals while in a corrosive environment that causes variations in the corrosion kinetics mainly due to galvanic coupling. Numerous surface analysis reports of retrieved metal implants have demonstrated evidence of fretting-corrosion at modular junctions. Previous studies on the fretting-corrosion of modular junctions reported the detrimental role of mechanically assisted corrosion (MAC) which is an unpredictable acceleration in the corrosion rates in association with mechanical wear. Hence, the synergistic approach of tribocorrosion that links tribology and corrosion is necessary to identify the pathways of failure at modular junctions. In this investigation the fundamental mechanisms influencing the tribocorrosion behavior of Ti and CoCrMo alloy in a simulated joint environment will be conducted. This technique will address the interaction between mechanical action, electrochemical degradation, metal ions and wear debris present at the modular junction interface. The objective in this application is to clearly define the potential mechanisms enabling the early failure of hip prostheses at the modular junction. We propose the following specific aims.
Aim 1 : Identify potential fretting regimes and the influence of pH level and load on the corrosion tendency.
Aim 2 : Study the electrochemical characteristics of the metal interface and the variability of the corrosion kinetics as a function of pH and load Aim 3: Develop a tribocorrosion synergistic model for Ti and CoCrMo alloys and identify the mechanistic transitions as a function of pH and fretting regime. It is expected that after the completion of ths project the failure mechanisms related to tribocorrosion will be determined and design improvements can be proposed to provide a safer modular junction that will assist the NIAMS mission of long-term solutions for the patients at a critical stage of arthritis. PHS 398/2590 (Rev 06/09) Page Continuation Format Page

Public Health Relevance

There are rising reports on the failure of hip implants at modular junctions due to combined action of fretting wear and corrosion (which is called tribocorrosion). The main objective of the proposed research is to identify the mechanistic transitions at modular junctions through the new combined approach tribocorrosion and develop a synergistic model for Ti and CoCrMo material couples with different surface topographies as a function of pH levels and load. The proposed research is relevant to public health because the outcomes will assist in creating rational improvements at hip modular junctions to prevent early failure. PHS 398/2590 (Rev. 06/09) Page Continuation Format Page

National Institute of Health (NIH)
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Small Research Grants (R03)
Project #
Application #
Study Section
Special Emphasis Panel (ZAR1-EHB (M1))
Program Officer
Panagis, James S
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Rush University Medical Center
Schools of Medicine
United States
Zip Code
Bijukumar, Divya Rani; McGeehan, Clay; Mathew, Mathew T (2018) Regenerative Medicine Strategies in Biomedical Implants. Curr Osteoporos Rep 16:236-245
Royhman, Dmitry; Patel, Megha; Jacobs, Joshua J et al. (2018) In vitro simulation of fretting-corrosion in hip implant modular junctions: The influence of pH. Med Eng Phys 52:1-9
Royhman, Dmitry; Patel, Megha; Runa, Maria J et al. (2016) Fretting-corrosion behavior in hip implant modular junctions: The influence of friction energy and pH variation. J Mech Behav Biomed Mater 62:570-87
Marques, Isabella da Silva Vieira; Alfaro, Maria Fernanda; Saito, Miki Taketomi et al. (2016) Biomimetic coatings enhance tribocorrosion behavior and cell responses of commercially pure titanium surfaces. Biointerphases 11:031008
Marques, Isabella da Silva Vieira; Alfaro, Maria Fernanda; Cruz, Nilson Cristino da et al. (2016) Tribocorrosion behavior of biofunctional titanium oxide films produced by micro-arc oxidation: Synergism and mechanisms. J Mech Behav Biomed Mater 60:8-21
Royhman, D; Patel, M; Runa, M J et al. (2015) Fretting-corrosion in Hip Implant Modular Junctions: New Experimental Set-up and Initial Outcome. Tribol Int 91:235-245
Runa, M J; Mathew, M T; Fernandes, M H et al. (2015) First insight on the impact of an osteoblastic layer on the bio-tribocorrosion performance of Ti6Al4V hip implants. Acta Biomater 12:341-351
Wimmer, M A; Laurent, M P; Mathew, M T et al. (2015) The effect of contact load on CoCrMo wear and the formation and retention of tribofilms. Wear 332-333:643-649
Marques, Isabella da Silva Vieira; BarĂ£o, Valentim Adelino Ricardo; da Cruz, Nilson Cristino et al. (2015) Electrochemical behavior of bioactive coatings on cp-Ti surface for dental application. Corrosion science 100:133-146