Pediatric limb deformities are clinically challenging disorders that result in lifelong disability, chronic pain, and often require multiple complex surgical reconstructions to restore function. Therapeutic strategies that can reversibly slow or accelerate the growth of the extremities by altering the biologic landscape of the epiphyseal growth plate have the potential to correct limb deformities while avoiding the complications and morbidity associated with current treatments. Epiphyseal growth plates initially grow at symmetrical rates within the body, but later in development begin to show changes in growth velocity based on their location within the body. We hypothesize that changes in the epigenetic state of the epiphyseal growth plate are responsible for the differential growth rates. MicroRNAs are small non-coding RNA molecules that are capable of mediating epigenetic shift by suppressing the activity of target transcription factors. This proposal will investigate the clinicl potential of microRNAs to induce epigenetic change within the epiphyseal growth plate to alter its growth velocity for applications in pediatric limb deformity correction by (i) defining gene regulatory parameters linked to growth rate in surgical biopsies of the human physis, (ii) validating the biologic activity of microRNA transcription factor regulatory networks on growth plate chondrocytes, and (iii) evaluating different drug delivery strategies that can potentially be used to treat limb length discrepancies and angular limb deformities. Completion of this investigation will identify small non-coding RNAs that can be therapeutically leveraged to treat pediatric limb deformities and leg length discrepancies by increasing or slowing limb growth. It will also identify transcription factor networks that can be therapeutically targeted to control lib growth using pharmacologic agents that are currently being used in clinical practice to treat other medical conditions. This proposal will also explore two different drug delivery strategies, one involving direct injection into the center of the epiphyseal growth plate to uniformly increase or decrease growth throughout the physis, and another delivery strategy where therapeutic agents are delivered preferentially to one side of the physis to intentionally induce asymmetrical growth across the physis, so that angular limb deformities can be corrected.

Public Health Relevance

Current strategies for treating pediatric limb length discrepancies and angular limb deformities are associated with significant morbidity and are often limited in their ability to maximize functional outcomes. This proposal will investigate the therapeutic potential of small non-coding RNAs and their associated transcription factor regulatory networks to act as modulators of limb growth by altering the epigenetic state of the epiphyseal growth plate, with the ultimate clinical goal of treating pediatric limb deformities without the need for complex surgical reconstructions.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Small Research Grants (R03)
Project #
1R03AR066342-01A1
Application #
8823861
Study Section
Special Emphasis Panel (ZAR1-XZ (M1))
Program Officer
Tyree, Bernadette
Project Start
2014-09-16
Project End
2017-07-31
Budget Start
2014-09-16
Budget End
2015-07-31
Support Year
1
Fiscal Year
2014
Total Cost
$79,500
Indirect Cost
$29,500
Name
Mayo Clinic, Rochester
Department
Type
DUNS #
006471700
City
Rochester
State
MN
Country
United States
Zip Code
55905
Camilleri, Emily T; Dudakovic, Amel; Riester, Scott M et al. (2018) Loss of histone methyltransferase Ezh2 stimulates an osteogenic transcriptional program in chondrocytes but does not affect cartilage development. J Biol Chem 293:19001-19011
Paradise, Christopher R; Galeano-Garces, Catalina; Galeano-Garces, Daniela et al. (2018) Molecular characterization of physis tissue by RNA sequencing. Gene 668:87-96
Thomas, Joshua J; Stans, Anthony A; Milbrandt, Todd A et al. (2018) Does School Screening Affect Scoliosis Curve Magnitude at Presentation to a Pediatric Orthopedic Clinic? Spine Deform 6:403-408
Riester, Scott M; Lin, Yang; Wang, Wei et al. (2018) RNA sequencing identifies gene regulatory networks controlling extracellular matrix synthesis in intervertebral disk tissues. J Orthop Res 36:1356-1369
Floccari, Lorena V; Larson, A Noelle; Stans, Anthony A et al. (2017) Delayed Dural Leak Following Posterior Spinal Fusion for Idiopathic Scoliosis Using All Posterior Pedicle Screw Technique. J Pediatr Orthop 37:e415-e420
Floccari, Lorena V; Su, Alvin W; McIntosh, Amy L et al. (2017) Distal Junctional Failure Following Pediatric Spinal Fusion. J Pediatr Orthop :
Riester, Scott M; Torres-Mora, Jorge; Dudakovic, Amel et al. (2017) Hypoxia-related microRNA-210 is a diagnostic marker for discriminating osteoblastoma and osteosarcoma. J Orthop Res 35:1137-1146
Su, Alvin W; Habermann, Elizabeth B; Thomsen, Kristine M et al. (2016) Risk Factors for 30-Day Unplanned Readmission and Major Perioperative Complications After Spine Fusion Surgery in Adults: A Review of the National Surgical Quality Improvement Program Database. Spine (Phila Pa 1976) 41:1523-34
Lewallen, Eric A; Bonin, Carolina A; Li, Xin et al. (2016) The synovial microenvironment of osteoarthritic joints alters RNA-seq expression profiles of human primary articular chondrocytes. Gene 591:456-64
Lin, Yang; Lewallen, Eric A; Camilleri, Emily T et al. (2016) RNA-seq analysis of clinical-grade osteochondral allografts reveals activation of early response genes. J Orthop Res 34:1950-1959

Showing the most recent 10 out of 13 publications