The olfactory bulb (OB) is the first relay station of olfactory information in the central nervous system (CNS). The general laminar organization and elaborate morphologies of OB projection neurons, mitral/tufted cells, have been well known for several decades, but we continue to lack insight into their developmental mechanisms. Previous studies revealed the timeline of anatomical changes of developing mitral cells. The next step is to understand the molecular determinants and pathways regulating the specific anatomical changes occurring during mitral/tufted cell development, which is the long-term goal of this project. To accomplish this goal, I have established a novel method to manipulate molecular expression in subsets of developing mitral cells. Using this method, this proposal seeks to investigate the roles of several candidate molecules in mitral cell development. The candidate molecules are three transcription factors (Tbr1, Tbr2, Tbx21), an extracellular matrix molecule (Reelin), a transmembrane protein (Protocadherin21), and a synaptic vesicle protein (vGluT1). All of these candidate molecules have been selected because they are specifically expressed by mitral/tufted cells in developing OB.
In Aim 1, the temporal expression pattern of candidate molecules in developing mitral cells will be established.
In Aim 2, the fate of mitral cell precursors in the absence of Tbr1 or Tbr2 will be determined.
In Aim 3, I will test hypotheses regarding the roles of Tbx21, Reelin, Protocadherin21, and vGluT1 in morphological development and/or synapse formation of mitral cells. These studies will provide us with new significant insights into molecular determinants and pathways working in developing mitral cells, which can then serve as a stepping stone to further research. I believe that this will become one of the leading works for neuronal circuitry formation during development of both the OB and elsewhere in the CNS where these molecules are expressed.

Public Health Relevance

Olfactory information is transmitted to diverse brain regions through mitral/tufted cells in the olfactory bulb. Several developmental disorders also have olfactory dysfunctions: for example, many Asperger's syndrome children have hyperosima (increased ability to smell) or hyposmia (reduced ability to smell);and Kallmann syndrome patients have anosmia (inability to smell). The general goal of this project is to understand the developmental mechanisms of mitral/tufted cells which could help in finding a cure of these olfactory dysfunctions.

National Institute of Health (NIH)
National Institute on Deafness and Other Communication Disorders (NIDCD)
Small Research Grants (R03)
Project #
Application #
Study Section
Special Emphasis Panel (ZDC1-SRB-Q (69))
Program Officer
Sullivan, Susan L
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Yale University
Schools of Medicine
New Haven
United States
Zip Code
Kawasawa, Yuka Imamura; Salzberg, Anna C; Li, Mingfeng et al. (2016) RNA-seq analysis of developing olfactory bulb projection neurons. Mol Cell Neurosci 74:78-86
Rodriguez-Gil, Diego J; Bartel, Dianna L; Jaspers, Austin W et al. (2015) Odorant receptors regulate the final glomerular coalescence of olfactory sensory neuron axons. Proc Natl Acad Sci U S A 112:5821-6
Imamura, Fumiaki; Greer, Charles A (2015) Segregated labeling of olfactory bulb projection neurons based on their birthdates. Eur J Neurosci 41:147-56
Mobley, Arie S; Rodriguez-Gil, Diego J; Imamura, Fumiaki et al. (2014) Aging in the olfactory system. Trends Neurosci 37:77-84
Nagayama, Shin; Homma, Ryota; Imamura, Fumiaki (2014) Neuronal organization of olfactory bulb circuits. Front Neural Circuits 8:98
Imamura, Fumiaki; Greer, Charles A (2013) Pax6 regulates Tbr1 and Tbr2 expressions in olfactory bulb mitral cells. Mol Cell Neurosci 54:58-70
Imamura, Fumiaki; Ayoub, Albert E; Rakic, Pasko et al. (2011) Timing of neurogenesis is a determinant of olfactory circuitry. Nat Neurosci 14:331-7