Since the recent recommendation by the American Academy of Pediatrics that babies be kept supine during sleep, there has been an observed increase in calvarial deformation. Most of these new cases are diagnosed as positional plagiocephaly because the deformation is most likely secondary to the external mechanical compression caused by prolonged supination of the babies head. Three major model have been proposed for the mechanotransduction of extrinsic forces to cellular events that may apply to neonatal sutures, and may explain the mechanism of calvarial deformation. The first is the tensegrity model in which extrinsic tension is linked to tension-integrated cytoskeletal changes via integrins. This model suggests that the cytoskeleton is capable of registering deformation and conveying that information to cytosolic and nuclear sites. The second model is the damage sensor model. This model suggests that plasma membrane disruptions in response to extrinsic forces lead to the influx of Ca++ or the efflux of growth factors capable of altering gene expression. The third model is the stretch activated channel (SAC) model which involves the opening of Ca++-permeable channels in response to cell deformation. Our hypothesis is that cells within immature cranial sutures are capable of mechanotransduction by a mechanism involving one or more of the above models. To test this we will separate and study these three models.
In Specific Aim #1 we will apply external tension to neonatal cranial sutures in organ culture in the presence and absence of inhibitors of cytoskeleton assembly. We will measure the modulation of mRNA and protein expression of the immediate-early gene product c-fos and connexin 43 which are both upregulated in response to stretch.
Specific Aim #2 examines the relative uptake by stretched vs. unstretched sutures of fluorescent dextran (Mr approximately 10,000), a cell-impermeant marker requiring cell membrane rupture and reseal to enter living cells.
Specific Aim #3 measures Ca++ influx into cranial sutures loaded with the fluorescent Ca++-sensitive dye indo-1 and stretched in the presence of L-type Ca++-channel and SAC blockers. This study will determine if a raise in cell Ca++ occurs in response to SAC or Ca++-channel- independent event. Mechanotransduction has been minimally studied in immature cranial sutures and elucidation of this mechanism promises important insight into this new and important area of research.

Agency
National Institute of Health (NIH)
Institute
National Institute of Dental & Craniofacial Research (NIDCR)
Type
Small Research Grants (R03)
Project #
5R03DE012812-02
Application #
6379866
Study Section
NIDCR Special Grants Review Committee (DSR)
Program Officer
Zhang, Guo He
Project Start
2000-07-01
Project End
2003-12-31
Budget Start
2001-07-01
Budget End
2003-12-31
Support Year
2
Fiscal Year
2001
Total Cost
$35,986
Indirect Cost
Name
Medical College of Georgia (MCG)
Department
Dentistry
Type
Schools of Dentistry
DUNS #
City
Augusta
State
GA
Country
United States
Zip Code
30912
Yu, Jack C; Chen, Jung-Ren; Lin, Chao-Hsiung et al. (2009) Tensile strain-induced Ets-2 phosphorylation by CaMKII and the homeostasis of cranial sutures. Plast Reconstr Surg 123:83S-93S
Ruan, W H; Winger, J N; Yu, J C et al. (2008) Induced premaxillary suture fusion: class III malocclusion model. J Dent Res 87:856-60
Ruan, Wen-Hua; Winger, Julia N; Yu, Jack C et al. (2008) Effects of induced premaxillary suture fusion on the craniofacial morphology in growing rats. Arch Oral Biol 53:79-86
Chen, J-R; Chatterjee, B; Meyer, R et al. (2004) Tbx2 represses expression of Connexin43 in osteoblastic-like cells. Calcif Tissue Int 74:561-73
Borke, James L; Yu, Jack C; Isales, Carlos M et al. (2003) Tension-induced reduction in connexin 43 expression in cranial sutures is linked to transcriptional regulation by TBX2. Ann Plast Surg 51:499-504
Borke, James L; Chen, Jung-Ren; Yu, Jack C et al. (2003) Negative transcriptional regulation of connexin 43 by Tbx2 in rat immature coronal sutures and ROS 17/2.8 cells in culture. Cleft Palate Craniofac J 40:284-90
Orellana, M F; Smith, A K; Waller, J L et al. (2002) Plasma membrane disruption in orthodontic tooth movement in rats. J Dent Res 81:43-7
Joe, B H; Borke, J L; Keskintepe, M et al. (2001) Interleukin-1beta regulation of adhesion molecules on human gingival and periodontal ligament fibroblasts. J Periodontol 72:865-70
Chen, J; Zhong, Q; Wang, J et al. (2001) Microarray analysis of Tbx2-directed gene expression: a possible role in osteogenesis. Mol Cell Endocrinol 177:43-54