The long-term objective of this proposal is to examine the consequences of inflammation-induced hyporetinemia on hepatic vitamin A (VA) stores and retinal function. Previously, it has been demonstrated that the synthesis of hepatic retinol-binding protein (RBP) and transthyretin (TTR) are reduced during acute inflammation causing a reduction of plasma retinol concentrations (hyporetinemia). The premise of the current study is that hyporetinemia, if prolonged, will impair the distribution of VA between hepatic and non-hepatic tissues. Two studies are proposed. In the first, the distribution and kinetic behavior of plasma retinol will be evaluated using kinetic data and model-based compartmental analysis during acute inflammation. Plasma containing labeled retinol {[3H]retinoI-RBP-TTR} will be injected iv to marginally-VA deficient rats and circulating tracer concentrations will be allowed to reach a terminal slope; then, the system will be perturbed by inducing acute inflammation with lipopolysaccharide from P. aeruginosa, and circulating tracer concentrations will be allowed to reach a new terminal slope. Tracer and tracee data will be collected from plasma, liver, kidneys, eyeballs and remaining carcass. Model-based compartmental analysis using the Simulation, Analysis and Modeling (SAAM) computer program will be used to adjust model parameters to best fit the data. Based on this analysis, hypotheses will be generated to explain the dynamics of pools of retinol among plasma, liver and kidneys, and how alterations in these pools may contribute to decrease retinal VA. in the second study, an animal model of chronic inflammation will be developed with continuous administration of recombinant human intedeukin-6 (rhlL6) to assess the effect of hyporetinemia on retinal function. Marginally-VA deficient rats will receive rhlL6 or saline by means of osmotic pumps for 7 to 14 d. VA concentrations in hepatic and non-hepatic tissues will be determined by HPLC at various times. Retinal function will be examined by means of electroretinography during the first and second weeks of experimentation. This information will help in re-defining VA status in the presence of low circulating retinol concentrations during inflammation. In addition, the application of these methods and the development of a model of chronic inflammation will foster research on other micronutrients like iron and zinc that are similarly affected by inflammation.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Small Research Grants (R03)
Project #
1R03DK062166-01A1
Application #
6679389
Study Section
Diabetes, Endocrinology and Metabolic Diseases B Subcommittee (DDK)
Program Officer
Podskalny, Judith M,
Project Start
2003-08-04
Project End
2006-05-31
Budget Start
2003-08-04
Budget End
2004-05-31
Support Year
1
Fiscal Year
2003
Total Cost
$133,113
Indirect Cost
Name
Pennsylvania State University
Department
Nutrition
Type
Schools of Allied Health Profes
DUNS #
003403953
City
University Park
State
PA
Country
United States
Zip Code
16802