Congenital heart diseases (CHDs) are the most common form of birth defects, occurring in as many as 1-5% of newborns, and remain the leading noninfectious cause of infant morbidity and mortality in developed countries. Malformation of valves accounts for up to 30% of CHDs. Despite decades of research, the mechanisms underlying congenital valve diseases remain largely elusive. MicroRNAs (miRNAs) have emerged as promising therapeutic targets/agents for various cardiovascular diseases. While critical roles of miRNAs in regulating cardiomyogenesis have been well established, their activities during valvulogenesis, especially in mammals, have been barely studied. Our current knowledge of miRNA function in developing valves is limited to several publications using zebrafish as the primary model system. The lack of knowledge regarding the roles of miRNAs during mammalian valvulogenesis poses a major barrier to developing diagnostic/therapeutic applications for miRNAs against valve diseases. To directly test whether miRNAs are essential for mammalian valve development, we established a mouse model in which Dicer1 is specifically inactivated in embryonic endocardial cells, which are precursors of valve leaflet cells. Our studies reveal for the first time that the miRNA regulatory machinery in endocardial cells is required for normal valvulogenesis to support survival of neonatal mice. We propose the central hypothesis that miRNAs are essential components of the molecular regulatory network governing normal valvulogenesis in mammals. We will test this hypothesis through the following two Specific Aims.
In Aim 1, we will determine the effect of globally blocking miRNA biosynthesis in endocardial cells on valvulogenesis in mice.
In Aim 2, we will test the role of miRNA-mediated repression of Ptpn11 in preventing valve hyperplasia. MiRNAs play important roles in numerous biological/pathological processes, and yet their functions during mammalian valvulogenesis have not been examined. Accomplishing these studies will significantly advance our fundamental understanding of the complex molecular/genetic mechanisms regulating mammalian valvulogenesis and provide crucial clues regarding the use of miRNAs for clinical applications against congenital valve diseases.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Small Research Grants (R03)
Project #
1R03HD082634-01
Application #
8808087
Study Section
Pediatrics Subcommittee (CHHD)
Program Officer
Javois, Lorette Claire
Project Start
2014-09-23
Project End
2016-08-31
Budget Start
2014-09-23
Budget End
2015-08-31
Support Year
1
Fiscal Year
2014
Total Cost
$73,500
Indirect Cost
$23,500
Name
University of Alabama Birmingham
Department
Genetics
Type
Schools of Medicine
DUNS #
063690705
City
Birmingham
State
AL
Country
United States
Zip Code
35294
Sun, Qianchuang; Liu, Shuyan; Liu, Kexiang et al. (2018) Role of Semaphorin Signaling During Cardiovascular Development. J Am Heart Assoc 7:
Peng, Yin; Yan, Shun; Chen, Dongquan et al. (2017) Pdgfrb is a direct regulatory target of TGF? signaling in atrioventricular cushion mesenchymal cells. PLoS One 12:e0175791
Peng, Yin; Song, Lanying; Li, Ding et al. (2016) Sema6D acts downstream of bone morphogenetic protein signalling to promote atrioventricular cushion development in mice. Cardiovasc Res 112:532-542
Yan, Shun; Jiao, Kai (2016) Functions of miRNAs during Mammalian Heart Development. Int J Mol Sci 17:
Peng, Yin; Song, Lanying; Li, Ding et al. (2016) Sema6D acts downstream of bone morphogenetic protein signalling to promote atrioventricular cushion development in mice. Cardiovasc Res :