The goal of the proposed research is (1) the removal of the ionic strength restriction of the various empirical conventions for pH standardization of physiological samples such as plasma, and the justification of the Pitzer ion interaction theory approach to assignment of pH values using the required single ion activity coefficients of the chloride ion in the standard buffers, at an ionic strength I = 0.16 m, similar to that found in serum; (2) adoption of the Pitzer formulation will play an important role for the establishment of a self consistent pH scale; and (3) experimental studies of dissociation equilibria under the """"""""real"""""""" conditions at finite ionic strength (as opposed to I = 0.0 m) using electro-chemical cells with and without liquid junction for electromotive-force measurements. The long-term goal is to greatly improve the state of pH measurements for primary reference standards with uncertainties less than or equal too .002. Utilizing isotonic saline as a simple matrix, eight new biological systems are chosen for study in the initial stages: (t) MOBS (0.04 m), NaMOBSate (0.04 m); (2) TABS (0.04 m), NaTABSate (0.04 m), (3) HEPBS (0.04 m), NaHEPBSate (0.04 m); and (4) CABS (0.04 m), NaCABSate (0.04 m); and similarly with 0.05 m buffer compositions. It is fundamental to have these data available for wide use in clinical chemistry.
The specific aim of the project involves (i) to determine the thermodynamic dissociation constants of MOBS, TABS, HEPBS, and CABS at 5 to 55 degreesC, including 37 degrees C (body temperature), since no data are available in the literature for these important biological buffers; (ii) to calculate pH values for eight useful standard reference solutions (two from each buffer) at ionic strengths similar to those in physiological fluids at temperatures from 5 to 55xC. For example, the solutions have the compositions: (a) 0.04 m MOBS + 0.04 m NaMOBSate + 0.12 m NaCI; and (b) 0.05 m MOBS + 0.05 m NaMOBSate + 0.1t m NaCI; (iii) to minimize the errors from liquid junction potentials by using a highly reproducible flowing junction cell, so that the operational pH values can be ascertained, (iv) to study the quantitative effect of NaCI in saline media on the essential ionic processes which regulate hydrogen ion in body fluids, and (v) to estimate the single ion activity coefficients, based on the Pitzer convention, required for reliable pH values.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Academic Research Enhancement Awards (AREA) (R15)
Project #
1R15GM066866-01
Application #
6556000
Study Section
Special Emphasis Panel (ZRG1-BECM (01))
Program Officer
Edmonds, Charles G
Project Start
2003-02-01
Project End
2006-07-31
Budget Start
2003-02-01
Budget End
2006-07-31
Support Year
1
Fiscal Year
2003
Total Cost
$132,000
Indirect Cost
Name
Drury University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
007177447
City
Springfield
State
MO
Country
United States
Zip Code
65802
Roy, Rabindra N; Roy, Lakshmi N; Henson, Isaac B et al. (2012) Buffer Standards for the Physiological pH of N-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]glycine (TRICINE) from T = (278.15 to 328.15) K. J Chem Thermodyn 52:11-15
Roy, Lakshmi N; Roy, Rabindra N; Allen, Kathleen A et al. (2012) Buffer standards for the physiological pH of the zwitterionic compound of 3-(N-morpholino)propanesulfonic acid (MOPS) from T = (278.15 to 328.15) K. J Chem Thermodyn 47:21-27
Roy, Rabindra N; Roy, Lakshmi N; Stegner, Jessica M et al. (2011) Buffer standards for the physiological pH of N,N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid (BES) from (278.15 to 328.15) K. J Electroanal Chem (Lausanne) 663:8-13
Roy, Lakshmi N; Roy, Rabindra N; Wollen, Joshua T et al. (2011) Buffer Standards for the Biological pH of the Amino Acid N-[2 hydroxyethyl]piperazine-N'-[3-propanesulfonic acid], HEPPS, From (278.15 to 328.15) K. J Chem Eng Data 56:4126-4132
Roy, Rabindra N; Roy, Lakshmi N; Ashkenazi, Shahaf et al. (2009) Buffer Standards for pH Measurement of N-(2-Hydroxyethyl)piperazine-N'-2-ethanesulfonic Acid (HEPES) for I = 0.16 mol.kg from 5 to 55 degrees C. J Solution Chem 38:449-458
Roy, Lakshmi N; Roy, Rabindra N; Lenoue, Sean R et al. (2009) Buffer Standards for the Physiological pH of the Zwitterionic Compound, DIPSO from 5 to 55 degrees C. J Solution Chem 38:459-469
Roy, Rabindra N; Roy, Lakshmi N; Fuge, Michael S et al. (2009) Buffer Standards for the Physiological pH of the Zwitterionic Compound, ACES from 5 to 55°C. J Solution Chem 38:471-483
Roy, Lakshmi N; Roy, Rabindra N; Denton, Cole E et al. (2009) Buffer Standards for the Biochemical pH of 3-(N-morpholino)-2-hydroxypropanesulfonic Acid from (278.15 to 328.15) K. J Chem Eng Data 54:1860-1864