Communication likely first evolved on our planet as chemical signals between single-cell microorganisms. A fundamental purpose for this type of communication in modern microorganisms is to allow these microbes to self-organize into functional communities. Colonies of the budding yeast, S. cerevisiae, provide an opportunity to investigate this type of community organization due to this model organism's peerless genome annotation and genetic malleability. The Honigberg lab discovered that diploid yeast colonies are organized into a layer of feeder cells underlying a layer of meiotic (sporulating) cells. Furthermore, the relative number of cells and dimensions of the two layers depends on colony environment. Feeder cells may stimulate sporulation in the overall community by providing nutrients to the cells of the overlying layer. In addition to its scientific interest, the health relevance of the proposed research derives from the fact that the spatial organization of pathogenic yeast biofilms contributes significantly to the lethality of hospital-acquired fungal infections. Furthermore, mechanisms of microbial community organization could help elucidate the forces driving organization of tissues and tumors in humans. A long-range goal of the Honigberg lab is to identify the mechanisms that regulate the self- organization of yeast colonies from homogeneous to highly patterned communities. The first specific aim of the application is to test the ?Differential Partitioning provides Environmental Buffer? hypothesis by determining whether the number of feeder cells in colonies correlates with the dependency on these feeder cells for sporulation across a range of conditions. In addition, we will determine whether establishing and maintaining differential partitioning depends on both cell autonomous and cell nonautonomous mechanisms. The second specific aim is to characterize feeder cells with respect to the similarity of expression patterns to quiescent cells found in cultures, and to test the hypotheses that the number of feeder cells in colonies responds to the respiratory state of the colony through mitochondrial signaling. Three complementary approaches are employed to address the above hypotheses. The first approach measures expression of known feeder-cell specific or sporulation-specific genes within intact wild- type or mutant colonies by confocal or multi-photon fluorescent microscopy, and to measure co-localization of these genes in cell populations from resuspended colonies. The second approach examines partitioning and other markers of colony development across a 2-D environmental landscape, i.e. when two environmental conditions (such as temperature or concentration of nutrients) are both varied. The third approach compares gene expression patterns in feeder and sporulation cell layers using FACS-Seq.

Public Health Relevance

All living organisms, including simple microorganisms, must communicate and respond in order to survive; that is, they must produce and respond to signals. In microorganisms, simple chemical signals between cells organize single-cell organisms into functional communities. Uncovering mechanisms of cell-to-cell communication in a model yeast species might eventually lead to new approaches toward combatting pathological communities such as the lethal biofilms that form on medical devices.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Academic Research Enhancement Awards (AREA) (R15)
Project #
2R15GM094770-03
Application #
9305292
Study Section
Nuclear and Cytoplasmic Structure/Function and Dynamics Study Section (NCSD)
Program Officer
Maas, Stefan
Project Start
2010-07-02
Project End
2020-04-30
Budget Start
2017-05-15
Budget End
2020-04-30
Support Year
3
Fiscal Year
2017
Total Cost
$453,000
Indirect Cost
$153,000
Name
University of Missouri Kansas City
Department
Anatomy/Cell Biology
Type
Schools of Arts and Sciences
DUNS #
010989619
City
Kansas City
State
MO
Country
United States
Zip Code
64110
Piccirillo, Sarah; Neog, Deepshikha; Spade, David et al. (2017) Shrinking Daughters: Rlm1-Dependent G1/S Checkpoint Maintains Saccharomyces cerevisiae Daughter Cell Size and Viability. Genetics 206:1923-1938
Piccirillo, Sarah; Kapros, Tamas; Honigberg, Saul M (2016) Phenotypic plasticity within yeast colonies: differential partitioning of cell fates. Curr Genet 62:467-73
Honigberg, Saul M (2016) Similar environments but diverse fates: Responses of budding yeast to nutrient deprivation. Microb Cell 3:302-328
Piccirillo, Sarah; Morales, Rita; White, Melissa G et al. (2015) Cell Differentiation and Spatial Organization in Yeast Colonies: Role of Cell-Wall Integrity Pathway. Genetics 201:1427-38
Piccirillo, Sarah; Wang, Hsiao-Lin; Fisher, Thomas J et al. (2011) GAL1-SceI directed site-specific genomic (gsSSG) mutagenesis: a method for precisely targeting point mutations in S. cerevisiae. BMC Biotechnol 11:120
Honigberg, Saul M (2011) Cell signals, cell contacts, and the organization of yeast communities. Eukaryot Cell 10:466-73
White, Melissa G; Piccirillo, Sarah; Dusevich, Vladimir et al. (2011) Flo11p adhesin required for meiotic differentiation in Saccharomyces cerevisiae minicolonies grown on plastic surfaces. FEMS Yeast Res 11:223-32
Piccirillo, Sarah; Honigberg, Saul M (2011) Yeast colony embedding method. J Vis Exp :