Apivotalpointincellularresourceallocationisthepointatwhichglycolyticintermediatesare partitionedtolipidbiosynthesisversusrespiration.Forexample,hyperlipidemiaoccurswhen cellsfavorlipidbiogenesisandisamajorriskfactorforcardiovasculardisease(CVD)including coronaryheartdisease,heartattackandstroke,thenumberonecausesofdeathintheUnited States.PASkinaseisaserine-threonineproteinkinasethatisakeyregulatorofthispivotal pointinglucoseallocation.PASkinase-deficientmice(PASK-/-)placedonahigh-fatdietora high-fathigh-sugardietareresistanttolivertriglycerideaccumulationanddisplayincreased wholeanimalaswellascellularrespirationrateswhencomparedtotheirwildtypelittermates. Livertriglycerideaccumulationandalteredmetabolicratearetwoprimaryriskfactorsinthe developmentofCVDaswellasrelateddiseasessuchastypeIIdiabetes.Wehaverecently identifiedtwoPASkinasesubstratesthatmayexplainitsregulationofthispivotalpointin metabolism,upstreamstimulatoryfactor1(USF1)andAtaxin-2.OurhypothesisisthatPAS kinaseregulatesthepivotalpointofpartitioningglucosetolipidversusrespiratorypathways throughphosphorylationofitssubstratesUSF1andAtaxin-2.USF1isatranscriptionfactorthat directlyregulatesfattyacidsynthaseandhumanmutationsinUSF1areassociatedwithfamilial hypercholesterolemia.PASkinasephosphorylatesandinhibitsUSF1inyeast.This phosphorylationleadstodecreasedrespirationandincreasedlipidbiosynthesis.Ataxin-2,on theotherhand,associateswithandsequestersmRNAandproteinstostressgranules, regulatingcellularmetabolismthroughtheirinhibition.PASkinase-dependentphosphorylation ofAtaxin-2activatestheproteinbyincreasingitslocalizationtostressgranulesinyeast.The focusofthisproposalistofurthercharacterizetheeffectsofPASkinase-dependent phosphorylationonthefunctionofUSF1andAtaxin-2inyeastandmammaliansystems.Our longtermgoalistoincreaseourunderstandingoftheregulationofcentralmetabolismwhile trainingundergraduatesinscientificresearch,therebyidentifyingnoveltargetsforthetreatment ofmetabolicdisease.Throughoutthisproposalwewillusethegeneticandbiochemicaltoolsof yeasttoinvestigatediseasesforwhichmostundergraduateshaveapersonalconnectionto, namelyhyperlipidemiaanddiabetes.

Public Health Relevance

Yeast is a perfect model organism in which to train undergraduates in biomedical research due to the ease of efficient methods and the application to human disease. The objective of this proposal is to use the biochemical and genetic tools of S. cerevisiae to characterize molecular pathways involved in the decision to partition glucose to respiration versus lipid biosynthesis, and to validate these findings in mammalian systems. Regulation of this pivotal metabolic node is likely to be key in the development and/or progression of metabolic diseases such as hyperlipidemia, diabetes, cancer and neurodegenerative disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Academic Research Enhancement Awards (AREA) (R15)
Project #
2R15GM100376-03A1
Application #
10114867
Study Section
Nuclear and Cytoplasmic Structure/Function and Dynamics Study Section (NCSD)
Program Officer
Barski, Oleg
Project Start
2020-09-15
Project End
2023-08-31
Budget Start
2020-09-15
Budget End
2023-08-31
Support Year
3
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Brigham Young University
Department
Microbiology/Immun/Virology
Type
Schools of Arts and Sciences
DUNS #
009094012
City
Provo
State
UT
Country
United States
Zip Code
84602
Stieg, David C; Willis, Stephen D; Ganesan, Vidyaramanan et al. (2018) A complex molecular switch directs stress-induced cyclin C nuclear release through SCFGrr1-mediated degradation of Med13. Mol Biol Cell 29:363-375
DeMille, Desiree; Badal, Bryan D; Evans, J Brady et al. (2015) PAS kinase is activated by direct SNF1-dependent phosphorylation and mediates inhibition of TORC1 through the phosphorylation and activation of Pbp1. Mol Biol Cell 26:569-82
DeMille, Desiree; Bikman, Benjamin T; Mathis, Andrew D et al. (2014) A comprehensive protein-protein interactome for yeast PAS kinase 1 reveals direct inhibition of respiration through the phosphorylation of Cbf1. Mol Biol Cell 25:2199-215
DeMille, Desiree; Grose, Julianne H (2013) PAS kinase: a nutrient sensing regulator of glucose homeostasis. IUBMB Life 65:921-9