Pulmonary neutrophilic inflammation and chronic infection with Pseudomonas aeruginosa (P. aeruginosa) are the major features of cystic fibrosis (CF). The resulting obstructive lung disease is the primary cause for the morbidity and mortality in CF patients. Our long term goal is to gain insight into the pathogenesis of recurrent infection and inflammation to identify novel targets for CF therapy. The focus of this study is on the role of high mobility group box 1 (HMGB1) in P. aeruginosa infection and inflammation in CF. Extracellular HMGB1 is a newly identified mediator for inflammation in acute lung injury and sepsis. Preliminary studies in an in vitro system indicate that airway HMGB1 plays a critical role in neutrophilic inflammation and in modulating the host's ability to clear P. aeruginosa in CF.
In Specific Aim 1 of this application, a CF mouse model of P. aeruginosa infection will be used to test the hypotheses that HMGB1 in CF airway evokes pulmonary inflammation and suppresses P. aeruginosa clearance. Both specific anti-HMGB1 antibodies and ethyl pyruvate, a pharmacological agent which can effectively reduce airway HMGB1 and is safe in humans, will be used in these experiments. Experiments designed in Specific Aim 2 will determine the role of airway epithelia in the elevated levels of airway HMGB1 in CF and the underlying mechanisms for the release of HMGB1 from CF epithelia. Western blot analyses will be used to determine the HMGB1 release in conditioned culture media of CF airway epithelia. The mechanisms of HMGB1 release from CF epithelia will be examined using pharmacological inhibitors of acetylase and CF transgenic epithelia.
Specific Aim 3 will focus on testing the hypotheses that HMGB1 suppresses bacterial clearance by: (a) decreasing the ability of macrophages to migrate and phagocytose P. aeruginosa via altering actin cytoskeleton organization, and (b) reducing bacterial killing by decreasing nitric oxide (NO) production. Actin cytoskeleton organization and NO production will be examined via histochemical and colorimetric Greiss analyses. Completion of this project will help us to understand the detailed mechanisms through which HMGB1 mediates the pathogenesis of CF. Inhibition of HMGB1 by ethyl pyruvate, which is in a phase II clinical trail, may provide a novel clinical tool for the treatment of CF patients.

Public Health Relevance

. In this application, we will use a mouse model of cystic fibrosis to test the hypothesis that high mobility group box 1 protein (HMGB1) in the airway suppresses bacterial clearance and evokes lung inflammation, which are the primary causes for the morbidity and mortality in cystic fibrosis patients. Completion of this project will help us understand the detailed mechanisms through which HMGB1 mediates the pathogenesis of cystic fibrosis. Inhibition of airway HMGB1 by ethyl pyruvate which is safe to humans and is in a phase II clinical trial, may provide a novel clinical tool for the treatment of CF patients.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Academic Research Enhancement Awards (AREA) (R15)
Project #
4R15HL093708-02
Application #
8770331
Study Section
Lung Cellular, Molecular, and Immunobiology Study Section (LCMI)
Program Officer
Banks-Schlegel, Susan P
Project Start
2013-12-01
Project End
2015-11-30
Budget Start
2013-12-01
Budget End
2015-11-30
Support Year
2
Fiscal Year
2014
Total Cost
$50,000
Indirect Cost
Name
St. John's University
Department
Pharmacology
Type
Schools of Pharmacy
DUNS #
073134744
City
Queens
State
NY
Country
United States
Zip Code
11439
Patel, Vivek S; Sampat, Vaishali; Espey, Michael Graham et al. (2016) Ascorbic Acid Attenuates Hyperoxia-Compromised Host Defense against Pulmonary Bacterial Infection. Am J Respir Cell Mol Biol 55:511-520
Wang, Mao; Gorasiya, Samir; Antoine, Daniel J et al. (2015) The compromise of macrophage functions by hyperoxia is attenuated by ethacrynic acid via inhibition of NF-?B-mediated release of high-mobility group box-1. Am J Respir Cell Mol Biol 52:171-82
Sharma, Lokesh; Wu, Wenjun; Dholakiya, Sanjay L et al. (2014) Assessment of phagocytic activity of cultured macrophages using fluorescence microscopy and flow cytometry. Methods Mol Biol 1172:137-45
Entezari, Maria; Javdan, Mohammad; Antoine, Daniel J et al. (2014) Inhibition of extracellular HMGB1 attenuates hyperoxia-induced inflammatory acute lung injury. Redox Biol 2:314-22
Sharma, Lokesh; Wu, Jiao; Patel, Vivek et al. (2014) Partially-desulfated heparin improves survival in Pseudomonas pneumonia by enhancing bacterial clearance and ameliorating lung injury. J Immunotoxicol 11:260-7
Patel, Vivek S; Sitapara, Ravikumar A; Gore, Ashwini et al. (2013) High Mobility Group Box-1 mediates hyperoxia-induced impairment of Pseudomonas aeruginosa clearance and inflammatory lung injury in mice. Am J Respir Cell Mol Biol 48:280-7
Phan, Binh D; Entezari, Maria; Lockshin, Richard A et al. (2011) Hydrogen peroxide enhances phagocytosis of Pseudomonas aeruginosa in hyperoxia. J Immunotoxicol 8:3-9
Gore, Ashwini; Muralidhar, Maitreyi; Espey, Michael Graham et al. (2010) Hyperoxia sensing: from molecular mechanisms to significance in disease. J Immunotoxicol 7:239-54