Small conductance calcium-activated potassium channels (SK1-3) are widely distributed throughout the brain and other organs. In hippocampal CA1 pyramidal neurons, SK2 channel- mediated hyperpolarization limits NMDAR activation, thereby resulting in a fine tuning of activity- dependent Ca2+ influx. By controlling NMDAR opening, SK2 channels also influence neurotransmission, neuronal firing frequency, synaptic plasticity, and learning and memory. While there is a wealth of information on SK2 channel gating and kinetics, and Ca2+ sensitivity, little is known about the regulation of SK2 channel numbers in synapses. The proposed studies intend to fill this knowledge gap by testing the hypothesis that the E3 ligase, UBE3A, whose maternal deletion results in Angelman syndrome, contributes to the removal of SK2 channels from the postsynaptic membrane and subsequent degradation, a process that is critical for both synaptic plasticity and memory formation. The hypothesis posits that synaptic SK2 channel number is elevated in Ube3a-deficient mice, as compared to wild-type littermates and that blocking SK2 channels could ameliorate some of the cognitive deficits present in these mice. The proposed studies will use a variety of integrated approaches, including electrophysiology, primary neuronal cultures, genetic construct reconstitution, biochemical assays and innovative fluorescent assays. Since SK2 channels are widely expressed in mammalian brain, the outcome of the proposal will have significant implications for a vast array of neurologic/neuropsychiatric disorders.

Public Health Relevance

While maternal UBE3A deletion results in Angelman syndrome its overexpression has been linked to autism. Likewise, overactivation or inhibition of SK2 channels is associated with either cognitive impairment or epilepsy, respectively. However, whether there is a direct link between these two proteins is unknown. The proposed studies address the regulation of SK2 channels by UBE3A and will provide critical information that can be used for identifying new therapeutic targets for a wide range of neurologic/neuropsychiatric disorders.

National Institute of Health (NIH)
National Institute of Mental Health (NIMH)
Academic Research Enhancement Awards (AREA) (R15)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Asanuma, Chiiko
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Western University of Health Sciences
Other Basic Sciences
Schools of Osteopathic Medicine
United States
Zip Code
Sun, Jiandong; Liu, Yan; Jia, Yousheng et al. (2018) UBE3A-mediated p18/LAMTOR1 ubiquitination and degradation regulate mTORC1 activity and synaptic plasticity. Elife 7:
Wang, Yubin; Hall, Randy A; Lee, Moses et al. (2017) The tyrosine phosphatase PTPN13/FAP-1 links calpain-2, TBI and tau tyrosine phosphorylation. Sci Rep 7:11771
Sun, Jiandong; Baudry, Michel; Bi, Xiaoning (2017) Novel neurobiological roles of UBE3A. Oncotarget 8:12548-12549
Zhu, Guoqi; Briz, Victor; Seinfeld, Jeff et al. (2017) Calpain-1 deletion impairs mGluR-dependent LTD and fear memory extinction. Sci Rep 7:42788
Baudry, Michel; Bi, Xiaoning (2016) Calpain-1 and Calpain-2: The Yin and Yang of Synaptic Plasticity and Neurodegeneration. Trends Neurosci 39:235-245
Sun, Jiandong; Liu, Yan; Tran, Jennifer et al. (2016) mTORC1-S6K1 inhibition or mTORC2 activation improves hippocampal synaptic plasticity and learning in Angelman syndrome mice. Cell Mol Life Sci 73:4303-4314
Liu, Yan; Wang, Yubin; Zhu, Guoqi et al. (2016) A calpain-2 selective inhibitor enhances learning & memory by prolonging ERK activation. Neuropharmacology 105:471-477
Liu, Yan; Sun, Jiandong; Wang, Yubin et al. (2016) Deleting both PHLPP1 and CANP1 rescues impairments in long-term potentiation and learning in both single knockout mice. Learn Mem 23:399-404
Bi, Xiaoning; Sun, Jiandong; Ji, Angela X et al. (2016) Potential therapeutic approaches for Angelman syndrome. Expert Opin Ther Targets 20:601-13
Briz, Victor; Liu, Yan; Zhu, Guoqi et al. (2015) A novel form of synaptic plasticity in field CA3 of hippocampus requires GPER1 activation and BDNF release. J Cell Biol 210:1225-37

Showing the most recent 10 out of 18 publications