The Asian tiger mosquito, Aedes albopictus (Skuse), is an important vector of dengue fever and also efficiently transmits yellow fever, chikungunya virus and several native North American arboviruses. The rapid spread of this mosquito from its native Asian range across the globe during the last 20 years and its recent involvement in disease outbreaks represents an outstanding public health concern. Photoperiodically mediated egg diapause is a pivotal ecological trait central to the ability of A. albopictus and other medically relevant mosquitoes to inhabit temperate environments and spread across broad geographic ranges. The long-term goal of this research program is to rigorously define the molecular basis of photoperiodic diapause in A. albopictus as a foundation for developing novel forms of vector control based on the disruption of this critical ecological adaptation. The immediate goal of this proposal is to identify transcriptional elements of the photoperiodic diapause response in A. albopictus.
In Specific Aim One, massively parallel pyrosequencing and bioinformatics analyses will be used to compare diapause vs. non-diapause transcriptomes from oocytes, developing embryos, and pharate larvae.
In Specific Aim 2, quantitative RT- PCR will be employed to identify transcriptional events underpinning the diapause response by comparing gene expression between a diapausing (temperate) and non- diapausing (tropical) population. In addition to providing a foundation for developing novel forms of vector control, results from these studies will rapidly advance gene discovery and understanding of stress response physiology in mosquitoes.

Public Health Relevance

Photoperiodic diapause refers to the ability of insects to measure day length (photoperiod) as a cue for initiating seasonally appropriate patterns of developmental arrest. This study will investigate the molecular control of photoperiodic diapause in the invasive and medically important mosquito, Aedes albopictus. Results of this study will provide a foundation for developing novel strategies for vector control based on the disruption of this critical ecological adaptation.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Exploratory/Developmental Grants (R21)
Project #
1R21AI081041-01A1
Application #
7739899
Study Section
Vector Biology Study Section (VB)
Program Officer
Costero, Adriana
Project Start
2009-06-19
Project End
2011-05-31
Budget Start
2009-06-19
Budget End
2010-05-31
Support Year
1
Fiscal Year
2009
Total Cost
$280,668
Indirect Cost
Name
Georgetown University
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
049515844
City
Washington
State
DC
Country
United States
Zip Code
20057
Poelchau, Monica F; Huang, Xin; Goff, Allison et al. (2014) An experimental and bioinformatics protocol for RNA-Seq analyses of photoperiodic diapause in the Asian tiger mosquito, Aedes albopictus. J Vis Exp :e51961
Denlinger, David L; Armbruster, Peter A (2014) Mosquito diapause. Annu Rev Entomol 59:73-93
Poelchau, Monica F; Reynolds, Julie A; Elsik, Christine G et al. (2013) RNA-Seq reveals early distinctions and late convergence of gene expression between diapause and quiescence in the Asian tiger mosquito, Aedes albopictus. J Exp Biol 216:4082-90
Poelchau, Monica F; Reynolds, Julie A; Denlinger, David L et al. (2013) Transcriptome sequencing as a platform to elucidate molecular components of the diapause response in the Asian tiger mosquito, Aedes albopictus. Physiol Entomol 38:173-181
Poelchau, Monica F; Reynolds, Julie A; Elsik, Christine G et al. (2013) Deep sequencing reveals complex mechanisms of diapause preparation in the invasive mosquito, Aedes albopictus. Proc Biol Sci 280:20130143
Reynolds, Julie A; Poelchau, Monica F; Rahman, Zahra et al. (2012) Transcript profiling reveals mechanisms for lipid conservation during diapause in the mosquito, Aedes albopictus. J Insect Physiol 58:966-73
Poelchau, Monica F; Reynolds, Julie A; Denlinger, David L et al. (2011) A de novo transcriptome of the Asian tiger mosquito, Aedes albopictus, to identify candidate transcripts for diapause preparation. BMC Genomics 12:619