In the early stages of Mycobacterium tuberculosis (Mtb) infection, irreversible tissue necrosis occurs as the result of localized lung inflammation. The bactericidal mechanism of macrophages and neutrophils, that are supposed to control the infection, in fact cause lung tissue damage and thus create a microenvironment that favors Mtb persistence. While Mtb is primarily an intra- cellular pathogen, we and others have shown that drug-tolerant bacilli can persist extra- cellularly in lesions with necrosis. Our long term goals is to determine whether restoring antioxidant capacity therapeutically will prevent the establishment of persistent, drug-tolerant bacilli thus rendering conventional anti-tuberculosis therapy more effective in animals and humans. Central to our proposal is the use of experimental Mtb infections in guinea pigs which develop primary lesion necrosis similar to humans with naturally occurring tuberculosis. Our hypothesis is that by restoring therapeutically the antioxidant defenses regulated by the host transcription factor nuclear redox factor2 (Nrf2) in Mtb-infected guinea pigs, conventional anti-tuberculosis drug therapy will be more effective against persistent, drug-tolerant bacilli. Our preliminary data shows that oxidative stress exists in human and guinea pig Mtb lesions. These lesions have excessive oxidative stress that depletes systemic and pulmonary antioxidant defenses. Oxidative defenses in the host are regulated, in part, by the transcription factor Nrf2. In human and guinea pig Mtb lesions, Nrf2 is defective since it fails to translocate from the cytoplasm to the nucleus. As a result, other downstream antioxidant proteins are not expressed in lesions.
The aim of this grant is to: Resolve whether Nrf2 targeted antioxidant therapy will increase the efficacy of anti-tuberculosis drugs. We will accomplish this aim by (1) further defining the role of oxidative stress and the depletion of Nrf2- regulated antioxidant defenses in the pathogenesis of lesion necrosis and Mtb persistence, (2) determining whether antioxidant drugs can restore Nrf2-regulated endogenous antioxidant defenses and (3), determining whether Nrf2 inducing drugs can be used to enhance the effectiveness of current anti-tuberculosis drugs by eliminating the persistence of drug-tolerant bacilli. By better understanding the pathogenesis of Mtb persistence and drug-tolerance, new treatment strategies can be added to the global fight to control human tuberculosis.

Public Health Relevance

As the body fights the bacterium that causes human tuberculosis, permanent tissue damage occurs, which allows the bacterium to hide and avoid being killed by antimicrobial drugs. Our research is aimed at preventing tissue damage and bacterial persistence so that antibiotics are more effective and the length of time required for patient treatment is reduced.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Exploratory/Developmental Grants (R21)
Project #
5R21AI083856-02
Application #
7897739
Study Section
Drug Discovery and Mechanisms of Antimicrobial Resistance Study Section (DDR)
Program Officer
Parker, Tina M
Project Start
2009-07-22
Project End
2011-06-30
Budget Start
2010-07-01
Budget End
2011-06-30
Support Year
2
Fiscal Year
2010
Total Cost
$186,979
Indirect Cost
Name
Colorado State University-Fort Collins
Department
Microbiology/Immun/Virology
Type
Schools of Veterinary Medicine
DUNS #
785979618
City
Fort Collins
State
CO
Country
United States
Zip Code
80523
Kiran, Dilara; Podell, Brendan K; Chambers, Mark et al. (2016) Host-directed therapy targeting the Mycobacterium tuberculosis granuloma: a review. Semin Immunopathol 38:167-83
Richardson, Mike A; Furlani, Robert E; Podell, Brendan K et al. (2015) Inhibition and breaking of advanced glycation end-products (AGEs) with bis-2-aminoimidazole derivatives. Tetrahedron Lett 56:3406-3409
Ackart, David F; Hascall-Dove, Laurel; Caceres, Silvia M et al. (2014) Expression of antimicrobial drug tolerance by attached communities of Mycobacterium tuberculosis. Pathog Dis 70:359-69
Palanisamy, Gopinath S; Kirk, Natalie M; Ackart, David F et al. (2012) Uptake and accumulation of oxidized low-density lipoprotein during Mycobacterium tuberculosis infection in guinea pigs. PLoS One 7:e34148
Shang, Shaobin; Shanley, Crystal A; Caraway, Megan L et al. (2012) Drug treatment combined with BCG vaccination reduces disease reactivation in guinea pigs infected with Mycobacterium tuberculosis. Vaccine 30:1572-82
Kato-Maeda, Midori; Shanley, Crystal A; Ackart, David et al. (2012) Beijing sublineages of Mycobacterium tuberculosis differ in pathogenicity in the guinea pig. Clin Vaccine Immunol 19:1227-37
Palanisamy, Gopinath S; Kirk, Natalie M; Ackart, David F et al. (2011) Evidence for oxidative stress and defective antioxidant response in guinea pigs with tuberculosis. PLoS One 6:e26254
Shang, Shaobin; Harton, Marisa; Tamayo, Marcela Henao et al. (2011) Increased Foxp3 expression in guinea pigs infected with W-Beijing strains of M. tuberculosis. Tuberculosis (Edinb) 91:378-85
Wolschendorf, Frank; Ackart, David; Shrestha, Tej B et al. (2011) Copper resistance is essential for virulence of Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 108:1621-6