Staphylococcus aureus is a predominant cause of community-acquired and nosocomial infections. In addition, it is the most common cause of skin and skin structure infections, and endocarditis, and is the second most common cause of bacteremia. Despite the use of new generation antibiotics, morbidity and mortality associated with S. aureus infections remain unacceptably high. Persistent MRSA bacteremia (PB) represents an important subset of S. aureus infections, and correlates with particularly severe outcomes. Therefore, PB presents a significant therapeutic challenge to the medical community. Understanding the relevant molecular mechanisms of PB is essential to optimize therapy against life-threatening S. aureus infections. Our preliminary data indicate that PB clinical outcomes significantly correlated with differences in key pathogenic characteristics as compared with resolving MRSA bacteremia (RB). These preliminary data provide a solid foundation to investigate our central hypotheses: early agr activation is an important pathogenic signature in persistent MRSA bacteremia. To test our hypotheses, we will achieve the following integrated Specfic Aims: 1) Define agr RNAIII transcription, functionality and locus sequence profiles in vitro in an expanded collection of well- characterized PB vs. RB strains;and 2) Define agr transcription and functionality in vivo using the experiment IE model, and evaluate the impact of these agr profiles on innate MRSA virulence and antimicrobial efficacy outcomes in the model. Northern blot analyses, gene sequence, nucleic acid sequence-based amplification (NASBA) and quantitative RT-PCR will be employed in this project. These studies will significantly advance our understanding the pathogenesis of MRSA infections. Our long-term goal is to identify unique PB signatures for development of rapid diagnostic means and novel antimicrobial strategies against MRSA infections, such as PB.

Public Health Relevance

Staphylococcus aureus is a predominant cause of community-acquired and nosocomial infections. Persistent MRSA bacteremia (PB) represents an important subset of S. aureus infections, and correlates with particularly severe outcomes. This study will significantly advance our understanding the pathogenesis of MRSA (i.e., early agr activation correlates of PB) and may provide new strategies to clinical diagnosis and treatment of S. aureus infections.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Exploratory/Developmental Grants (R21)
Project #
5R21AI097657-02
Application #
8416324
Study Section
Drug Discovery and Mechanisms of Antimicrobial Resistance Study Section (DDR)
Program Officer
Huntley, Clayton C
Project Start
2012-02-01
Project End
2015-01-31
Budget Start
2013-02-01
Budget End
2015-01-31
Support Year
2
Fiscal Year
2013
Total Cost
$206,561
Indirect Cost
$38,348
Name
La Biomed Research Institute/ Harbor UCLA Medical Center
Department
Type
DUNS #
069926962
City
Torrance
State
CA
Country
United States
Zip Code
90502
Li, Liang; Cheung, Ambrose; Bayer, Arnold S et al. (2016) The Global Regulon sarA Regulates ?-Lactam Antibiotic Resistance in Methicillin-Resistant Staphylococcus aureus In Vitro and in Endovascular Infections. J Infect Dis 214:1421-1429
Xiong, Yan Q; Yang, Soo-Jin; Tong, Steven Y C et al. (2015) The role of Staphylococcal carotenogenesis in resistance to host defense peptides and in vivo virulence in experimental endocarditis model. Pathog Dis 73:
Abdelhady, Wessam; Chen, Liang; Bayer, Arnold S et al. (2015) Early agr activation correlates with vancomycin treatment failure in multi-clonotype MRSA endovascular infections. J Antimicrob Chemother 70:1443-52
Luo, G; Spellberg, B; Gebremariam, T et al. (2014) Combination therapy with iron chelation and vancomycin in treating murine staphylococcemia. Eur J Clin Microbiol Infect Dis 33:845-51
Cheung, Ambrose L; Bayer, Arnold S; Yeaman, Michael R et al. (2014) Site-specific mutation of the sensor kinase GraS in Staphylococcus aureus alters the adaptive response to distinct cationic antimicrobial peptides. Infect Immun 82:5336-45
Abdelhady, Wessam; Bayer, Arnold S; Seidl, Kati et al. (2014) Impact of vancomycin on sarA-mediated biofilm formation: role in persistent endovascular infections due to methicillin-resistant Staphylococcus aureus. J Infect Dis 209:1231-40
Gupta, Ravi Kr; Alba, Jimena; Xiong, Yan Q et al. (2013) MgrA activates expression of capsule genes, but not the ?-toxin gene in experimental Staphylococcus aureus endocarditis. J Infect Dis 208:1841-8
Yang, Soo-Jin; Xiong, Yan Q; Yeaman, Michael R et al. (2013) Role of the LytSR two-component regulatory system in adaptation to cationic antimicrobial peptides in Staphylococcus aureus. Antimicrob Agents Chemother 57:3875-82