Interactions between B cells and CD4 T cells are mediated by peptide-MHC class II complexes and support full development of a humoral immune response. B cells are antigen-specific antigen presenting cells, where immunologically relevant antigen processing occurs subsequent to B cell receptor (BCR)-mediated binding and internalization of cognate antigen. This laboratory has established that BCR-mediated antigen processing occurs subsequent to antigen (Ag)-BCR ubiquitination and results in expression of derivative peptide-class II complexes (termed """"""""Type I"""""""" complexes) with unique functional and biochemical properties. The underlying hypothesis driving this project is that processing of Ag-BCR complexes occurs within an MHC class II peptide-loading complex (PLC) located in MHC class II enriched antigen processing compartments. To test this hypothesis, we will extend our new preliminary data and take a biochemical approach to further define the molecular composition of the class II PLC in B cells processing antigen internalized either via BCR-mediated or fluid-phase endocytosis (Aim 1). We will also utilize a """"""""FRET microscopy"""""""" approach to study the dynamics of class II PLC formation in intact B cells (Aim 2). The overall goal of this proposal is to gain a better understanding of the molecular mechanism of class II peptide loading subsequent to BCR-mediated antigen processing, and to determine if class II peptide loading occurs within a PLC containing a dedicated source of antigenic peptide (i.e., Ag-BCR complexes).

Public Health Relevance

Interactions between antigen specific B cells and CD4 helper T cells are restricted by B cell expressed peptide-MHC class II complexes. The goal of this project is to define the molecular mechanism by which antigen specific B cells generate these critical peptide-class II complexes. This information will be helpful in the design of new vaccines that enhance the production of these complexes or therapeutic protocols to dampen this mechanism in cases of autoimmunity.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Exploratory/Developmental Grants (R21)
Project #
1R21AI097673-01A1
Application #
8383558
Study Section
Cellular and Molecular Immunology - A Study Section (CMIA)
Program Officer
Gondre-Lewis, Timothy A
Project Start
2012-08-01
Project End
2014-07-31
Budget Start
2012-08-01
Budget End
2013-07-31
Support Year
1
Fiscal Year
2012
Total Cost
$237,000
Indirect Cost
$87,000
Name
Albany Medical College
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
190592162
City
Albany
State
NY
Country
United States
Zip Code
12208
Drake, James R (2018) The immunobiology of ubiquitin-dependent B cell receptor functions. Mol Immunol 101:146-154
Drake, Lisa A; Drake, James R (2016) A triad of molecular regions contribute to the formation of two distinct MHC class II conformers. Mol Immunol 74:59-70
Barroso, Margarida; Tucker, Heidi; Drake, Lisa et al. (2015) Antigen-B Cell Receptor Complexes Associate with Intracellular major histocompatibility complex (MHC) Class II Molecules. J Biol Chem 290:27101-12