Inflammatory bowel disease (IBD) affects more than 1.4 million people in the United States and accounts for more than $1.7 billion dollars in health care costs. IBD requires lifetime care and currently has no medical cure. Therefore, understanding the mechanisms involved in the pathogenesis of IBD is crucial for developing new therapeutic strategies to prevent or cure this inflammatory disease. Current studies demonstrate a crucial role for Toll-like receptors and NF?B signaling in the pathogenesis of intestinal inflammation. In this context, our laboratory recently identified GPCR kinase-5 to be an important regulator of NF?B signaling in immune cells, especially macrophages. G-protein coupled receptor (GPCR) kinases originally discovered for their role in GPCR phosphorylation, are now known to also mediate signal transduction from non-GPCRs via phosphorylation of cytosolic substrates. Of the seven GRK family members (serine/threonine kinases), studies from our laboratory and others demonstrate an evolutionarily conserved role for GPCR kinase-5 (GRK5) in the regulation of NF?B signaling pathway, as well as in the consequent inflammatory disease pathogenesis, especially mediated by TLRs. Our published and preliminary results demonstrate that GRK5 plays an important role in mouse models of inflammation including colitis. The objective of this proposal is to further expand on our findings and examine the role o GRK5 in mouse models of intestinal inflammation and determine the cellular and molecular mechanisms by which GRK5 modulates inflammatory bowel disease. To accomplish our objective, we will examine the following specific aims: 1. Determine the in vivo mechanisms by which GRK5 regulates inflammatory bowel disease;2. Determine the cellular and molecular mechanisms by which GRK5 regulates intestinal inflammation. Results from these proposed studies in the short-term will provide important insights into the role of GRK5 in the pathogenesis of inflammatory bowel disease (IBD). In the long-term our studies will contribute to identifying new and novel therapeutic targets for inflammatory diseases including IBD.

Public Health Relevance

Inflammatory bowel disease (IBD) affects more than 1.4 million people in the United States and accounts for more than $1.7 billion dollars in health care costs. Proposed studies on G-protein coupled receptor kinase-5 will help identify new and novel therapeutic targets for treating or preventing IBD.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Exploratory/Developmental Grants (R21)
Project #
Application #
Study Section
Gastrointestinal Mucosal Pathobiology Study Section (GMPB)
Program Officer
Rothermel, Annette L
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Michigan State University
Schools of Medicine
East Lansing
United States
Zip Code
Steury, Michael D; Kang, Ho Jun; Lee, Taehyung et al. (2018) G protein-coupled receptor kinase-2-deficient mice are protected from dextran sodium sulfate-induced acute colitis. Physiol Genomics 50:407-415
Sharma, Deepika; Malik, Ankit; Packiriswamy, Nandakumar et al. (2018) Poly(I:C) Priming Exacerbates Cecal Ligation and Puncture-Induced Polymicrobial Sepsis in Mice. Inflammation 41:328-336
Collins, Fraser L; Schepper, Jonathan D; Rios-Arce, Naiomy Deliz et al. (2017) Immunology of Gut-Bone Signaling. Adv Exp Med Biol 1033:59-94
Steury, Michael D; Lucas, Peter C; McCabe, Laura R et al. (2017) G-protein-coupled receptor kinase-2 is a critical regulator of TNF? signaling in colon epithelial cells. Biochem J 474:2301-2313
Rios-Arce, Naiomy Deliz; Collins, Fraser L; Schepper, Jonathan D et al. (2017) Epithelial Barrier Function in Gut-Bone Signaling. Adv Exp Med Biol 1033:151-183
Steury, Michael D; McCabe, Laura R; Parameswaran, Narayanan (2017) G Protein-Coupled Receptor Kinases in the Inflammatory Response and Signaling. Adv Immunol 136:227-277
Lee, Taehyung; Packiriswamy, Nandakumar; Lee, Eunhee et al. (2017) Role of G protein-coupled receptor kinase-6 in Escherichia coli lung infection model in mice. Physiol Genomics 49:682-689
Collins, Fraser L; Rios-Arce, Naiomy D; Atkinson, Shelby et al. (2017) Temporal and regional intestinal changes in permeability, tight junction, and cytokine gene expression following ovariectomy-induced estrogen deficiency. Physiol Rep 5:
Lee, Taehyung; Lee, Eunhee; Arrollo, David et al. (2016) Non-Hematopoietic ?-Arrestin1 Confers Protection Against Experimental Colitis. J Cell Physiol 231:992-1000
Packiriswamy, Nandakumar; Steury, Michael; McCabe, Ian C et al. (2016) Bacterial Dose-Dependent Role of G Protein-Coupled Receptor Kinase 5 in Escherichia coli-Induced Pneumonia. Infect Immun 84:1633-1641

Showing the most recent 10 out of 19 publications