Targeting genes responsible for vectorial capacity is a novel approach to controlling infectious diseases. To develop a better understanding of genetic determinants of vectorial capacity and with support from vector biologists and members of the malaria community, NHGRI and NIAID have funded the sequencing of the genomes and transcriptomes of 16 Anopheles species (www.broadinstitute.org/annotation/genome/anopheles). With genome sequences becoming available, researchers now have the unique opportunity to perform comparative analysis for inferring evolutionary changes relevant to vector ability. However, success of these comparative genomic analyses will be limited, and inferences about evolution of the vectorial capacity traits will be less informative if researchers deal with numerous sequencing scaffolds rather than with chromosome-based genome assemblies. The major goal of this R21 project is to develop chromosome-based reference genome assemblies for three major malaria vectors: An. arabiensis, An. stephensi, and An. albimanus. Draft genome assemblies are available for these species (https://olive.broadinstitute.org/comparisons/anopheles.1). Our project is timely because it will create crucial genomic tools for the newly sequenced Anopheles species. The project is innovative because it will use the automated multicolor fluorescent in situ hybridizatio (AM-FISH) and automated microscopic analysis. We will, for the first time, perform phylogenetic analysis of anopheline mosquitoes by genome-wide gene order analysis and gain important insights into patterns and mechanisms of chromosomal rearrangements. The availability of state-of-the-art equipment and the expertise of the PI in cytogenetics and comparative genomic analysis will ensure successful achievement of the project's goal. The proposal has three specific aims.
Specific Aim 1. Physically map sequencing scaffolds to chromosomes of An. arabiensis, An. stephensi, and An. albimanus. We will place and orient scaffolds to polytene chromosomes by AM-FISH, thus, creating chromosome-based reference genome assemblies for the species belonging to the series Pyretophorus (subgenus Cellia), series Neocellia (subgenus Cellia), and series Albimanus (subgenus Nyssorhynchus), respectively.
Specific Aim 2. Reconstruct genome-scale rearrangement phylogeny of genus Anopheles. We will identify breakpoints of all fixed inversions in An. arabiensis and will refine the chromosomal phylogeny in the An. gambiae complex using An. stephensi and An. albimanus as outgroup species.
Specific Aim 3. Determine the pattern and mechanisms of chromosome evolution in genus Anopheles. We will test the hypotheses that (i) the X chromosome has the highest rate of inversion fixation despite the paucity of inversion polymorphisms, and (ii) inversions have chromosome-specific and species-specific mechanisms of origin and rates of fixation. !

Public Health Relevance

Comparative genomic analysis of malaria mosquito species can identify evolutionary changes relevant to vector ability. Toward this goal, the proposed project will physically map sequencing contigs to chromosomes, to explore phylogenetic relationships, and to understand the pattern and mechanisms of chromosome evolution in malaria mosquitoes.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Exploratory/Developmental Grants (R21)
Project #
1R21AI099528-01A1
Application #
8637289
Study Section
Vector Biology Study Section (VB)
Program Officer
Costero, Adriana
Project Start
2014-01-15
Project End
2015-12-31
Budget Start
2014-01-15
Budget End
2014-12-31
Support Year
1
Fiscal Year
2014
Total Cost
$202,803
Indirect Cost
$67,803
Name
Virginia Polytechnic Institute and State University
Department
Zoology
Type
Schools of Earth Sciences/Natur
DUNS #
003137015
City
Blacksburg
State
VA
Country
United States
Zip Code
24061
Artemov, Gleb N; Peery, Ashley N; Jiang, Xiaofang et al. (2017) The Physical Genome Mapping of Anopheles albimanus Corrected Scaffold Misassemblies and Identified Interarm Rearrangements in Genus Anopheles. G3 (Bethesda) 7:155-164
Sharakhov, Igor V; Artemov, Gleb N; Sharakhova, Maria V (2016) Chromosome evolution in malaria mosquitoes inferred from physically mapped genome assemblies. J Bioinform Comput Biol 14:1630003
Hall, Andrew Brantley; Papathanos, Philippos-Aris; Sharma, Atashi et al. (2016) Radical remodeling of the Y chromosome in a recent radiation of malaria mosquitoes. Proc Natl Acad Sci U S A 113:E2114-23
Kinney, Nicholas Allen; Onufriev, Alexey V; Sharakhov, Igor V (2015) Quantified effects of chromosome-nuclear envelope attachments on 3D organization of chromosomes. Nucleus 6:212-24
Sharakhov, Igor V; Sharakhova, Maria V (2015) Heterochromatin, histone modifications, and nuclear architecture in disease vectors. Curr Opin Insect Sci 10:110-117
Fontaine, Michael C; Pease, James B; Steele, Aaron et al. (2015) Mosquito genomics. Extensive introgression in a malaria vector species complex revealed by phylogenomics. Science 347:1258524
Artemov, G N; Sharakhova, M V; Naumenko, A N et al. (2015) A standard photomap of ovarian nurse cell chromosomes in the European malaria vector Anopheles atroparvus. Med Vet Entomol 29:230-7
Jiang, Xiaofang; Peery, Ashley; Hall, A Brantley et al. (2014) Genome analysis of a major urban malaria vector mosquito, Anopheles stephensi. Genome Biol 15:459