The matrix (M) protein is the major viral structural protein that regulates assembly and structure determination in members of the Para- and Ortho-myxoviridae families. The two families include numerous human pathogens such as human respiratory syncytial virus (hRSV), measles virus (MeV), human parainfluenza virus (hPIV), and the Influenza A, B, and C genera. The matrix protein initiates virus assembly by forming oligomeric sheets in specific regions along the host cell membrane. The M protein also orchestrates the incorporation of the viral glycoproteins and the ribonucleoprotein (RNP) into the evolving viral particles. Here we aim to determine two things: 1) the native structure and organization of RSV, which is an archetypical member of the Paramyxoviridae family;and 2) how the RSV M protein regulates virus assembly and determines virus morphology. To answer these questions, we are using the A2 strain of RSV that causes bronchiolitis, viral pneumonia, and death in young children, the elderly, and immuno-compromised individuals. We are analyzing RSV structure to build upon our previous structural studies of HIV-1 assembly and maturation, our ongoing structural analysis of native measles virus glycoprotein arrangements and interactions, and to develop RSV as a model system for future structural studies of virus assembly, virus organization, and the development of correlative microscopy methods. Together these studies will provide new information regarding the pleiomorphic structure of native RSV virions and the structural and functional role of the matrix protein in myxovirus assembly and morphology regulation. The two areas to be investigated in this project are: 1. Determine the native structure of RSV strain A2. Experiments will determine the natural structure of RSV through cryo-ET of frozen hydrated virions. Cryo-immuno-EM approaches and RSV RNA-specific probes will be used to define the placement and organizational patterns of the RSV structural proteins, F, G, SH, M, and the RNP complex during cryo-ET analysis of cryo-preserved virions. 2. Determine the structure of oligomeric RSV M in vivo and under in vitro assembly conditions. Experiments in this aim will determine the in vivo structure of RSV M in native virions and virus like particles (VLPs) through cryo-ET and sub-tomogram averaging. Cryo-ET, cryo-EM and helical reconstruction approaches will define the high-resolution structure of RSV M under in vitro assembly conditions.

Public Health Relevance

This project addresses several questions of critical importance to the success of viruses that are pathogens of humans and other animals. Many viruses use a matrix or matrix-like protein to regulate assembly, budding, and overall virus particle structure. The structural studies proposed will first enable us to determine the native structure of RSV and the factors that govern RSV structure. The second set of studies has been developed to determine the structure of the oligomeric state of RSV M. RSV, the specific virus being analyzed is a human pathogen that causes bronchiolitis, viral pneumonia, and death in young children, the elderly, and immuno- compromised individuals. There is no vaccine against RSV and only one expensive prophylactic treatment available. The knowledge gained in the proposed study may be translated into the development of therapeutics and vaccines to improve public health.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Exploratory/Developmental Grants (R21)
Project #
5R21AI101775-02
Application #
8646878
Study Section
Macromolecular Structure and Function C Study Section (MSFC)
Program Officer
Kim, Sonnie
Project Start
2013-04-15
Project End
2015-03-31
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
2
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Emory University
Department
Pediatrics
Type
Schools of Medicine
DUNS #
City
Atlanta
State
GA
Country
United States
Zip Code
30322
Ke, Zunlong; Strauss, Joshua D; Hampton, Cheri M et al. (2018) Promotion of virus assembly and organization by the measles virus matrix protein. Nat Commun 9:1736
Dillard, Rebecca S; Hampton, Cheri M; Strauss, Joshua D et al. (2018) Biological Applications at the Cutting Edge of Cryo-Electron Microscopy. Microsc Microanal 24:406-419
Ke, Zunlong; Dillard, Rebecca S; Chirkova, Tatiana et al. (2018) The Morphology and Assembly of Respiratory Syncytial Virus Revealed by Cryo-Electron Tomography. Viruses 10:
Hampton, Cheri M; Strauss, Joshua D; Ke, Zunlong et al. (2017) Correlated fluorescence microscopy and cryo-electron tomography of virus-infected or transfected mammalian cells. Nat Protoc 12:150-167
Stobart, Christopher C; Rostad, Christina A; Ke, Zunlong et al. (2016) A live RSV vaccine with engineered thermostability is immunogenic in cotton rats despite high attenuation. Nat Commun 7:13916
Strauss, Joshua D; Hammonds, Jason E; Yi, Hong et al. (2016) Three-Dimensional Structural Characterization of HIV-1 Tethered to Human Cells. J Virol 90:1507-21
Yi, Hong; Strauss, Joshua D; Ke, Zunlong et al. (2015) Native immunogold labeling of cell surface proteins and viral glycoproteins for cryo-electron microscopy and cryo-electron tomography applications. J Histochem Cytochem 63:780-92
Kiss, Gabriella; Holl, Jens M; Williams, Grant M et al. (2014) Structural analysis of respiratory syncytial virus reveals the position of M2-1 between the matrix protein and the ribonucleoprotein complex. J Virol 88:7602-17
Kiss, Gabriella; Chen, Xuemin; Brindley, Melinda A et al. (2014) Capturing enveloped viruses on affinity grids for downstream cryo-electron microscopy applications. Microsc Microanal 20:164-74