Our overall research program addresses the need for much more efficient methods of synthesizing and manufacturing peptide- and protein-based drugs. The objective of this application is the development, using novel peptide coupling/ligation chemistries, of two new syntheses of enfuvirtide (below) that are far more sustainable than the extant enfuvirtide synthesis.
The aims for this project are: 1. Modify the existing fragment condensation synthesis of enfuvirtide to generate the N-terminal (1- 16) fragment and the C-terminal (27-36) fragment via solution-phase synthesis using recently demonstrated N-carboxyanhydride (NCA) couplings (enhanced by solvophobic techniques) and serine ligation methods. 2. Develop a de novo synthesis of enfuvirtide using sub-segments from Aim 1 assembled by serine ligations to form the serine-rich N-terminal (1-11) and C-terminal (30-36) fragments, followed by serine ligation of these fragments to a central (12-29) fragment. The expected outcomes of this work include: procedures that enable preparative production of the enfuvirtide drug substance in fewer operations with reduced use of reagents and solvents and the generation of significantly less chemical waste;demonstration of novel NCA couplings and serine ligations in the context of a challenging molecular target that will endorse the strategy for application to other peptide therapeutics. Synthesis of enfuvirtide is relevant to human health because it is a valuable and unique antiretroviral drug for the treatment of HIV-1 infection. However, the cost of enfuvirtide therapy (related to its high manufacturing costs) is prohibitive, so it is typically held in reserve for """"""""salvage"""""""" therapy in patients with multi-drug resistant HIV. The impact of the work will be based on both the potential to drive down the cost of a valuable drug therapy as well as the provision of guidance to others aiming to develop new methods for peptide drug preparation. This project will utilize the following methods: organic synthesis, peptide synthesis, and solid-phase synthesis.

Public Health Relevance

This research will be of significant benefit to the US public health because of the utility of enfuvirtide specifically for the therapy of drug-resistant HIV disease, and more generally because of the increasing prominence of peptide pharmaceuticals and the need for more cost-efficient methods for their manufacture. The performance site for the project is UC-Riverside, a US Department of Education designated Hispanic Serving Institution (HSI).

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Exploratory/Developmental Grants (R21)
Project #
1R21AI106597-01
Application #
8541523
Study Section
AIDS Discovery and Development of Therapeutics Study Section (ADDT)
Program Officer
Nasr, Mohamed E
Project Start
2013-07-26
Project End
2015-06-30
Budget Start
2013-07-26
Budget End
2014-06-30
Support Year
1
Fiscal Year
2013
Total Cost
$202,100
Indirect Cost
$61,100
Name
University of California Riverside
Department
Chemistry
Type
Schools of Earth Sciences/Natur
DUNS #
627797426
City
Riverside
State
CA
Country
United States
Zip Code
92521
Pirrung, Michael C; Zhang, Fa; Ambadi, Sudhakar et al. (2016) Total synthesis of fellutamides, lipopeptide proteasome inhibitors. More sustainable peptide bond formation. Org Biomol Chem 14:8367-75
Pirrung, Michael C; Schreihans, Ryan S (2016) Native Serine Peptide Assembly: Scope and Utility. European J Org Chem 2016:5633-5636