Studies of HIV transmission within populations (i.e., transmission networks) have demonstrated the critical importance of highly connected individuals (i.e., defined by highly related HIV strains indicative of putative transmissions) in sustaining the rate of HIV epidemic spread. The high mutation rate associated with HIV replication provides a nearly unique HIV genetic sequence (i.e., a fingerprint equivalent) in infected individuals resulting in an opportunity to study patterns of transmission network structure. While molecular epidemiologic data are used to track changes in epidemic course and geography, they are rarely (if ever) applied in real time to refocus prevention and treatment interventions to discrete populations or clusters within a population. Because partial HIV-1 pol sequences are generated for routine drug resistance testing, the data necessary to perform molecular analyses are readily available. Paired with appropriate epidemiologic data, network analyses can be used to identify emerging epidemics within groups of individuals related by similar patterns of illicit substance use, drug resistance, sexually transmitted infection, venues f exposure and stage of HIV infection that are appropriate targets for treatment and prevention interventions. Despite the significant public health advantage to using HIV genetic data to study and potentially intervene on real-time network spread of disease, these studies have been limited by fears of loss of privacy related to hypothetical disclosure of potential transmission between two or more individuals. Such disclosure of putative transmission between two or more individuals represents a concern for both consumers and healthcare providers. Unfortunately, no metrics exist to quantify this risk, and no guidelines exist for the use of non-host genetics to target interventions for infectious epidemics. The lack of guidelines in this sensitive area limits progress and research in the molecular epidemiology of HIV. There is an urgent need for guidelines based on both perspectives of the diverse stakeholders and on better definition and quantification of the limits of privacy risk. Our overall goal is to characterize perceptions of privacy risk among stakeholders and reduce uncertainty regarding privacy risk in HIV network analysis. To address the ethical challenges highlighted by the conflict between the public health potential to limit HIV transmission and the need to maximally protect personal healthcare privacy, we propose two Specific Aims: 1) Assess perceptions regarding HIV transmission network analyses. and 2) demonstrate strong quantifiable privacy associated with transmission network analysis. This proposal will be the first to begin framing the risk-benefit ratio for the ue of HIV genetic data used for molecular epidemiologic analyses to target interventions based on HIV transmission networks. The outcomes of these analyses may serve as a foundation for future discussions of genetic investigations of outbreaks and spread of other human pathogens.

Public Health Relevance

The genetic sequence of HIV in every infected person is nearly unique (i.e., a fingerprint equivalent) and provides an opportunity to study how HIV is spread within communities and populations and identify emerging epidemics that are appropriate targets for treatment and prevention interventions. These intervention studies have been limited by ethical concerns related to potential loss of privacy associated with disclosure of HIV transmission between individuals. Our overall goal is to address the ethical challenges highlighted by the conflict between the public health potential to limit HIV transmission and the need to maximally protect personal healthcare privacy and to reduce the uncertainty regarding privacy risk associated with these studies.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Exploratory/Developmental Grants (R21)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-AARR-L (56))
Program Officer
Dawson, Liza
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Diego
Internal Medicine/Medicine
Schools of Medicine
La Jolla
United States
Zip Code
Osorio, Georgina; Hoenigl, Martin; Quartarolo, Jennifer et al. (2017) Evaluation of opt-out inpatient HIV screening at an urban teaching hospital. AIDS Care 29:1014-1018
Hoenigl, Martin; Braun, Dominique L; Kouyos, Roger et al. (2017) Evaluation of the Predictive Potential of the Short Acute Retroviral Syndrome Severity Score for HIV-1 Disease Progression in Individuals With Acute HIV Infection. J Acquir Immune Defic Syndr 74:e114-e117
Graves, Susannah K; Little, Susan J; Hoenigl, Martin (2017) Risk profile and HIV testing outcomes of women undergoing community-based testing in San Diego 2008-2014. Sci Rep 7:42183
Green, Nella; Hoenigl, Martin; Chaillon, Antoine et al. (2017) Partner services in adults with acute and early HIV infection. AIDS 31:287-293
Hoenigl, Martin; Chaillon, Antoine; Moore, David J et al. (2016) Rapid HIV Viral Load Suppression in those Initiating Antiretroviral Therapy at First Visit after HIV Diagnosis. Sci Rep 6:32947
Panichsillapakit, Theppharit; Smith, Davey M; Wertheim, Joel O et al. (2016) Prevalence of Transmitted HIV Drug Resistance Among Recently Infected Persons in San Diego, CA 1996-2013. J Acquir Immune Defic Syndr 71:228-36
Hoenigl, Martin; Chaillon, Antoine; Little, Susan J (2016) CD4/CD8 Cell Ratio in Acute HIV Infection and the Impact of Early Antiretroviral Therapy. Clin Infect Dis 63:425-6
Hoenigl, Martin; Little, Susan J (2016) How can we detect HIV during the acute or primary stage of infection? Expert Rev Mol Diagn 16:1049-1051
Geiger, R; Smith, D M; Little, S J et al. (2016) Validation of the GeneXpert® CT/NG Assay for use with Male Pharyngeal and Rectal Swabs. Austin J HIV AIDS Res 3:
Hoenigl, Martin; Chaillon, Antoine; Morris, Sheldon R et al. (2016) HIV Infection Rates and Risk Behavior among Young Men undergoing community-based Testing in San Diego. Sci Rep 6:25927

Showing the most recent 10 out of 17 publications