Germinal centers (GCs) are unique microenvironment that has proliferative B cells undergoing class switching, somatic hypermuation, and affinity maturation. Although alternative pathways exist, GCs are the major source of long-lived antibody (Ab)-secreting plasma cells and memory B cells. Previous studies have demonstrated that SLE may develop as a result of enhanced GC activity. Spontaneous GC formation has been found in the lupus-prone mice. In addition, active lupus patients have abnormal GC reactions and increased plasma cells. Therefore, understanding signaling pathways that regulate the GC formation and GC B cell differentiation may identify novel targets for the successful intervention of SLE. The signal transducer and activator of transcription factor 3 (STAT3) signaling pathway is critical for human B cells to differentiate into Ab-secreting plasma cells. Dysregulation of STAT3 pathway has also been implicated in the development of SLE. However, the role of STAT3 in the GC B cell response has been controversial. A previous study has demonstrated that B cell-specific STAT3 deficient mice have lower T- dependent IgG response but display normal GC formation. Paradoxically, GC is the major source of both memory B cells and long-lived plasma cells. One caveat of this study is that they only examined GC response at day 12. Our preliminary studies demonstrated that B cell-specific STAT-3 KO mice had significantly decreased GC formation, GC B cells, and Tfh cells in the later phase (days 21 and 28) but not in the early time point (days 7 and 12). Furthermore, STAT3-deficient autoreactive B cells had defective autoAb responses and GC B cell differentiation upon immunization. We hypothesize that STAT3 signaling is essential for the maintenance of the GC formation and GC B cell differentiation.
Two Aims are proposed to address this hypothesis.
Aim 1 determines the mechanisms by which STAT3 signaling regulates the maintenance of the GC formation and GC B cell response. We will test the hypothesis that STAT3 signaling is required for the GC B cell survival. The specific stage of GC B cell differentiation that requires STAT3 signaling will be determined.
Aim 2 examines whether B cell intrinsic STAT3 signaling is required for autoAb production and disease progression in lupus-prone MRL/lpr mouse model. In addition, we will use anti-CD19 single chain variable fragment (scFv) miniAb to specifically deliver STAT3 siRNA into B cells in MRL/lpr mice. The therapeutic efficacy of this intervention will be determined. The overall goal of this proposal is to determine how STAT3 signaling regulates the GC formation and GC B cell response and whether ablation of STAT3 signaling specifically in autoreactive B cells provides benefit for lupus treatment.
This study will determine the cellular and molecular mechanisms by which STAT3 signaling pathway regulates the germinal center formation and germinal center B cell response. The successful completion of this study may provide an innovative approach for autoimmune disease therapy such as systemic lupus erythematosus (SLE).
Yan, J (2017) Identifying biomarkers in human psoriasis: revealed by a systems metabolomics approach. Br J Dermatol 176:555-557 |
Ding, Chuanlin; Chen, Xingguo; Dascani, Paul et al. (2016) STAT3 Signaling in B Cells Is Critical for Germinal Center Maintenance and Contributes to the Pathogenesis of Murine Models of Lupus. J Immunol 196:4477-86 |
Krem, Maxwell M; Yan, Jun (2016) To b(ortezomib) or not to be: the stroma's the thing. J Pathol 240:123-5 |