Each year millions of Americans suffer from tendon injuries, resulting in impaired work performance and reduction in quality of life while costing billions of healthcare dollars in treatment. Injured tendons heal poorly and form scar tissue, which is prone to re-injury because of its inferior mechanical strength. Current treatments are largely ineffective in restoring normal structure and function to injured tendons. The objective of this project is to enhance the quality of tendon healing by using newly discovered tendon stem cells (TSCs), platelet-rich plasma (PRP), and engineered tendon matrix (ETM). The TSCs, PRP, and ETM will be implanted into tendon window defects on a well-established rabbit injury model. Then, biological and histological properties of the injured tendon at short and long term time points, 6 and 26 weeks, respectively, will be assessed. In addition, the functional recovery of injured tendons will be evaluated by mechanical testing of tendon specimens to determine their structural and mechanical properties. This study is highly innovative in that a potent combination of tendon-specific regenerative cells (TSCs), natural healing growth factors (PRP), and tendon specific matrix components (ETM) will be explored for the first time to enhance tendon repair. The findings of this study may lead to application of this combination therapy clinically to effectively repair or possibly regenerate injured tendons, thus benefiting millions of tendon injury patients in the United States alone. Moreover, we will use the proven tendon injury mode in this study as a """"""""stepping-stone"""""""" for further studying healing problems of other tendon types, including flexor and rotator cuff tendons.

Public Health Relevance

Using a combination of tendon stem cells (TSCs), platelet-rich plasma (PRP), and engineered tendon matrix (ETM), this project aims to enhance repair of acutely injured tendons. The results of this study may lead to a new effective clinical treatment for injured tendons, thus benefiting millions of tendon injury patients in the United States alone. In addition, this study will serve as a stepping-stone for investigating healing problems of other types of injured tendons, including flexor and rotator cuff tendons.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Exploratory/Developmental Grants (R21)
Project #
5R21AR060920-02
Application #
8486402
Study Section
Musculoskeletal Tissue Engineering Study Section (MTE)
Program Officer
Wang, Fei
Project Start
2012-09-01
Project End
2014-08-31
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
2
Fiscal Year
2013
Total Cost
$194,299
Indirect Cost
$66,049
Name
University of Pittsburgh
Department
Orthopedics
Type
Schools of Medicine
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Wang, James H-C; Zhao, Guangyi; Li, Bin (2016) Measurement of Cell Motility Using Microgrooved Substrates. Methods Mol Biol 1365:293-9
Yuan, Ting; Zhang, Jianying; Zhao, Guangyi et al. (2016) Creating an Animal Model of Tendinopathy by Inducing Chondrogenic Differentiation with Kartogenin. PLoS One 11:e0148557
Wang, James H-C; Zhao, Guangyi; Li, Bin (2016) The Study of Cell Motility by Cell Traction Force Microscopy (CTFM). Methods Mol Biol 1365:301-13
Wu, Huiyan; Zhao, Guangyi; Zu, Hongfei et al. (2016) Real-Time Monitoring of Platelet Activation Using Quartz Thickness-Shear Mode Resonator Sensors. Biophys J 110:669-679
Wu, Huiyan; Zhao, Guangyi; Zu, Hongfei et al. (2015) Aging-related viscoelasticity variation of tendon stem cells (TSCs) characterized by quartz thickness shear mode (TSM) resonators. Sens Actuators (Warrendale Pa) 210:369-380
Zhang, Jianying; Wang, James H-C (2015) Moderate Exercise Mitigates the Detrimental Effects of Aging on Tendon Stem Cells. PLoS One 10:e0130454
Sun, Hui B; Schaniel, Christoph; Leong, Daniel J et al. (2015) Biology and mechano-response of tendon cells: Progress overview and perspectives. J Orthop Res 33:785-92
Zhou, Yiqin; Zhang, Jianying; Wu, Haishan et al. (2015) The differential effects of leukocyte-containing and pure platelet-rich plasma (PRP) on tendon stem/progenitor cells - implications of PRP application for the clinical treatment of tendon injuries. Stem Cell Res Ther 6:173
Wu, Huiyan; Zu, Hongfei; Wang, Qing-Ming et al. (2014) Label-free Detection of Protein Released during Platelet Activation by CNT-Enhanced Love Mode SAW Sensors. IEEE Int Ultrason Symp 2014:1528-1531
Zhang, Jianying; Wang, James H-C (2014) PRP treatment effects on degenerative tendinopathy - an in vitro model study. Muscles Ligaments Tendons J 4:10-7

Showing the most recent 10 out of 23 publications