Rotator cuff tears are the most common cause of shoulder pain and related disability. Likelihood of injury increases dramatically with advancing age. Over time following injury, the tendon retracts, leaving a large defect. However, not only is the tissue gap a problem, but also the nature of the muscle changes, with an end result of decreased compliance and increased stiffness. Though it is clear that the tension required for repair increases with time after injury, there is much individual variation. Thus, it is critical to have an individualized pre-surgical prediction of extensibility of rotator cuff muscles assist in pre-surgical planning and monitoring of recovery throughout the rehabilitation process. Our long-term goal is to develop a non-invasive tool for acquiring such information to improve the planning, and thus, the outcome of treatment. The purpose of this study is to initiate the development by adopting a novel technology, namely, Shear Wave Elastography (SWE). The SWE provides quantitative in vivo measurements of tissue stiffness and viscosity by evaluating shear wave propagation speed, which is inherently related to tissue mechanical properties. We propose this unique and innovative approach which combines b-mode ultrasound imaging (to assess muscle geometric and morphological properties) with SWE (to assess muscle material properties) to quantify muscle structural properties which will then be used to predict the extensibility of rotator cuff muscles (typically supraspinatus muscle). The objective of this study will be accomplished in the following three specific aims using cadaver shoulder specimens in vitro:
Specific Aim 1 : To obtain the material and geometric properties of the supraspinatus muscles using SWE and b-mode ultrasound imaging, respectively.
Specific Aim 2 : To measure muscle extensibility and structural properties of the supraspinatus muscles through mechanical testing.
Specific Aim 3 : To establish the relationship between structural stiffness of in vitro supraspinatus muscles (measured in Specific Aim 2) with muscle modulus measured with SWE and geometric/morphological properties based on b-mode imaging (measurements in aim 1) via regression analyses. The contribution will be significant because it will provide a necessary, non-invasive assessment of whole-tissue extensibility that will directly aid in prognosis, pre-surgical planning, and post-surgical evaluation of rotator cuff repair, one of the most common and challenging procedures in orthopedics.

Public Health Relevance

Tears in the muscles that surround the shoulder joint are the most likely cause of shoulder pain. Surgeons need information about how well these injured muscles stretch so they can plan the best surgical repair. This project will use a new imaging method based on sound waves to determine how much these injured muscles can stretch to improve surgical outcomes.

National Institute of Health (NIH)
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Exploratory/Developmental Grants (R21)
Project #
Application #
Study Section
Skeletal Biology Structure and Regeneration Study Section (SBSR)
Program Officer
Panagis, James S
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Mayo Clinic, Rochester
United States
Zip Code
Giambini, Hugo; Hatta, Taku; Rezaei, Asghar et al. (2018) Extensibility of the supraspinatus muscle can be predicted by combining shear wave elastography and magnetic resonance imaging-measured quantitative metrics of stiffness and volumetric fat infiltration: A cadaveric study. Clin Biomech (Bristol, Avon) 57:144-149
Giambini, Hugo; Hatta, Taku; Gorny, Krzysztof R et al. (2018) Intramuscular fat infiltration evaluated by magnetic resonance imaging predicts the extensibility of the supraspinatus muscle. Muscle Nerve 57:129-135
Hatta, Taku; Giambini, Hugo; Itoigawa, Yoshiaki et al. (2017) Quantifying extensibility of rotator cuff muscle with tendon rupture using shear wave elastography: A cadaveric study. J Biomech 61:131-136
Hatta, Taku; Giambini, Hugo; Hooke, Alexander W et al. (2016) Comparison of Passive Stiffness Changes in the Supraspinatus Muscle After Double-Row and Knotless Transosseous-Equivalent Rotator Cuff Repair Techniques: A Cadaveric Study. Arthroscopy 32:1973-1981
Hatta, Taku; Giambini, Hugo; Zhao, Chunfeng et al. (2016) Biomechanical Effect of Margin Convergence Techniques: Quantitative Assessment of Supraspinatus Muscle Stiffness. PLoS One 11:e0162110
Mo, Jianqiang; Xu, Hao; Qiang, Bo et al. (2016) Bias of shear wave elasticity measurements in thin layer samples and a simple correction strategy. Springerplus 5:1341
Hatta, Taku; Giambini, Hugo; Sukegawa, Koji et al. (2016) Quantified Mechanical Properties of the Deltoid Muscle Using the Shear Wave Elastography: Potential Implications for Reverse Shoulder Arthroplasty. PLoS One 11:e0155102
Hatta, Taku; Giambini, Hugo; Uehara, Kosuke et al. (2015) Quantitative assessment of rotator cuff muscle elasticity: Reliability and feasibility of shear wave elastography. J Biomech 48:3853-8
Itoigawa, Yoshiaki; Sperling, John W; Steinmann, Scott P et al. (2015) Feasibility assessment of shear wave elastography to rotator cuff muscle. Clin Anat 28:213-8