Ketogenic diets, which are low in protein and carbohydrates and high in fats, result in elevated ketones (2-hydroxybuturate and acetoacetate;precursors to Acetyl-CoA) forcing cells to rely more heavily on mitochondrial metabolism for energy production. It has been hypothesized that cancer cells, relative to normal cells, exist in a condition of chronic metabolic oxidative stress mediated by O2""""""""- and H2O2, with a major site of pro-oxidant production being mitochondrial electron transport chain complexes. If cancer cells (relative to normal cells) have defective mitochondrial O2 metabolism that results in chronic metabolic oxidative stress and ketogenic diets force cancer cells to rely more heavily on mitochondrial O2 metabolism, then ketogenic diets would be expected to selectively cause oxidative stress in cancer cells which in turn would be expected to selectively sensitize cancer cells to conventional cancer therapeutic agents that cause cell killing via oxidative stress. The current proposal will test the hypothesis that ketogenic diets enhance the anti-cancer effects of radio-chemo-therapy combined with inhibitors of glucose metabolism via metabolic oxidative stress. This hypothesis will be tested in two specific aims the first of which will determine if 2DG-induced radio-chemo-sensitization can be enhanced in vitro with 2- hydroxybuturate and/or acetoacetate in human head and neck cancer cells (with CIS) and pancreatic cancer cells (with gemcitabine) via a mechanism involving O27- and H2O2 mediated metabolic oxidative stress.
The second aim will determine if ketogenic diets can enhance 2DG-induced radio and/or chemo- sensitization in vivo in human tumor xenograft models of pancreatic and head and neck cancer via metabolic oxidative stress. If chemo-radio-sensitization caused by inhibitors of glucose and hydroperoxide metabolism combined with ketogenic diets can be confirmed to be caused by metabolic oxidative stress, this work could provide the first biochemical rationale for using relatively non-toxic dietary interventions aimed at selectively enhancing oxidative stress in cancer cells combined with conventional anti-cancer agents for the purpose of enhancing cancer therapy based on fundamental differences between cancer and normal cell oxidative metabolism.

Public Health Relevance

Project Narrative: The observation that Increase levels of reactive oxygen species in cancer cells may compensated for by increases in glucose metabolism has led to the idea that cancer cells may have fundamental defects in oxidative metabolism that can be exploited to improve cancer therapy with dietary manipulations. The current proposal will test the hypothesis that ketogenic diets enhance the anti-cancer effects of radio-chemo-therapy combined with inhibitors of glucose metabolism via metabolic oxidative stress. If chemo-radio-sensitization caused by ketogenic diets combined with inhibitors of glucose metabolism can be confirmed to be caused by metabolic oxidative stress, this work could provide a novel biochemical rationale for using dietary interventions to selectively enhance oxidative stress in cancer cells for the purpose of improving conventional cancer therapies based on fundamental differences between cancer and normal cell oxidative metabolism.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Exploratory/Developmental Grants (R21)
Project #
5R21CA139182-02
Application #
7883584
Study Section
Basic Mechanisms of Cancer Therapeutics Study Section (BMCT)
Program Officer
Forry, Suzanne L
Project Start
2009-07-01
Project End
2011-12-30
Budget Start
2010-07-01
Budget End
2011-12-30
Support Year
2
Fiscal Year
2010
Total Cost
$165,000
Indirect Cost
Name
University of Iowa
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
062761671
City
Iowa City
State
IA
Country
United States
Zip Code
52242
Zahra, Amir; Fath, Melissa A; Opat, Emyleigh et al. (2017) Consuming a Ketogenic Diet while Receiving Radiation and Chemotherapy for Locally Advanced Lung Cancer and Pancreatic Cancer: The University of Iowa Experience of Two Phase 1 Clinical Trials. Radiat Res 187:743-754
Li, Ling; Fath, Melissa A; Scarbrough, Peter M et al. (2015) Combined inhibition of glycolysis, the pentose cycle, and thioredoxin metabolism selectively increases cytotoxicity and oxidative stress in human breast and prostate cancer. Redox Biol 4:127-35
Allen, Bryan G; Bhatia, Sudershan K; Anderson, Carryn M et al. (2014) Ketogenic diets as an adjuvant cancer therapy: History and potential mechanism. Redox Biol 2:963-70
Allen, Bryan G; Bhatia, Sudershan K; Buatti, John M et al. (2013) Ketogenic diets enhance oxidative stress and radio-chemo-therapy responses in lung cancer xenografts. Clin Cancer Res 19:3905-13
Goel, Apollina; Spitz, Douglas R; Weiner, George J (2012) Manipulation of cellular redox parameters for improving therapeutic responses in B-cell lymphoma and multiple myeloma. J Cell Biochem 113:419-25
Fath, Melissa A; Ahmad, Iman M; Smith, Carmen J et al. (2011) Enhancement of carboplatin-mediated lung cancer cell killing by simultaneous disruption of glutathione and thioredoxin metabolism. Clin Cancer Res 17:6206-17
Cullen, Joseph J; Spitz, Douglas R; Buettner, Garry R (2011) Comment on ""Pharmacologic ascorbate synergizes with gemcitabine in preclinical models of pancreatic cancer,"" i.e., all we are saying is, give C a chance. Free Radic Biol Med 50:1726-7
Fath, Melissa A; Diers, Anne R; Aykin-Burns, Nukhet et al. (2009) Mitochondrial electron transport chain blockers enhance 2-deoxy-D-glucose induced oxidative stress and cell killing in human colon carcinoma cells. Cancer Biol Ther 8:1228-36