Our goal is to integrate systems biology approaches into the analysis of cancer drug resistance mechanisms, and thus to develop and evaluate new strategies for the efficient selection of optimal therapeutic combinations. In our recent work, we used siRNA screening to interrogate over 600 candidate genes from a set we nominated by network modeling to be enriched for regulators of EGFR signaling. This and subsequent analysis identified SC4MOL (sterol C4-methyl oxidase-like), a little-studied intermediate in the sterol biosynthesis pathway, as a potent regulator of cell viability following treatment with the EGFR inhibitors erlotinib and cetuximab. To understand the mechanism of SC4MOL action, we again used a bioinformatics strategy to model an interaction network for evolutionarily conserved orthologs of SC4MOL and its partner protein, NSDHL (NADP-dependent steroid dehydrogenase-like). This predicted multiple connections to regulators of exocytic trafficking and protein degradation. In direct preliminary test of the network predictions, we demonstrated that RNAi depletion of SC4MOL or NSDHL resulted in loss of EGFR from the plasma membrane, and enhanced its ubiquitination and degradation. Our hypothesis is that loss of interactions between SC4MOL and NSDHL with partner proteins influences trafficking so as to accelerate EGFR degradation, thereby potentiating EGFR-targeting drugs. To further validate this approach to identifying modifiers of targeted response, and potentially validate SC4MOL and NSDHL as biomarkers of drug response and/or targets for drug development, we will perform the following two Aims:
Aim 1. Investigate the mechanism by which SC4MOL and NSDHL regulate EGFR trafficking. We will assess how SC4MOL and NSDHL influence EGFR trafficking and degradation, and whether the catalytic activity of SC4MOL and NSDHL is required for their actions. We will analyze interactions between SC4MOL and a small set of predicted conserved interaction partners with known roles in regulating vesicular trafficking predicted by bioinformatics analysis of the orthologs in lower eukaryotes.
Aim 2. Investigate the interaction of SC4MOL and NSDHL with ERAD proteins. We have found silencing of SC4MOL or NSDHL enhances EGFR ubiquitination and lysosomal degradation. Our analysis identified a number of candidates within the ER-associated protein degradation (ERAD) system, which will be tested for physical association with SC4MOL and NSDHL, and for a role in SC4MOL- and NSDHL-dependent regulation of EGFR expression, trafficking, and degradation. Given the prominence of EGFR as a target in cancer therapy, this work has potentially high impact to reduce drug resistance relevant to many clinically valuable therapeutic agents.

Public Health Relevance

In pursuit of our long-term goal of integration of systems biology approaches into the analysis of cancer drug resistance and of new strategies for targeted therapeutic combinations, we have identified a previously unknown synthetic lethality interaction between SC4MOL, a sterol metabolism enzyme, and EGFR. Analysis of interaction network for conserved orthologs (potential interologs) of SC4MOL and a functionally linked partner protein, NSDHL, has identified multiple connections to control exocytic trafficking and degradation. On this basis, we formulated our new hypothesis that SC4MOL and NSDHL regulate EGFR traffic and degradation, and are potentially highly valuable new targets for cancer therapy and prevention.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Exploratory/Developmental Grants (R21)
Project #
1R21CA164205-01
Application #
8223653
Study Section
Tumor Cell Biology Study Section (TCB)
Program Officer
Hildesheim, Jeffrey
Project Start
2012-09-01
Project End
2013-08-31
Budget Start
2012-09-01
Budget End
2013-08-31
Support Year
1
Fiscal Year
2012
Total Cost
$194,119
Indirect Cost
$85,369
Name
Fox Chase Cancer Center
Department
Type
DUNS #
073724262
City
Philadelphia
State
PA
Country
United States
Zip Code
19111
Bobrov, Egor; Skobeleva, Natalia; Restifo, Diana et al. (2017) Targeted delivery of chemotherapy using HSP90 inhibitor drug conjugates is highly active against pancreatic cancer models. Oncotarget 8:4399-4409
Gerson, James N; Skariah, Sam; Denlinger, Crystal S et al. (2017) Perspectives of HER2-targeting in gastric and esophageal cancer. Expert Opin Investig Drugs 26:531-540
Beglyarova, Natalya; Banina, Eugenia; Zhou, Yan et al. (2016) Screening of Conditionally Reprogrammed Patient-Derived Carcinoma Cells Identifies ERCC3-MYC Interactions as a Target in Pancreatic Cancer. Clin Cancer Res 22:6153-6163
Gabitova, Linara; Restifo, Diana; Gorin, Andrey et al. (2015) Endogenous Sterol Metabolites Regulate Growth of EGFR/KRAS-Dependent Tumors via LXR. Cell Rep 12:1927-38
Perkins, James; Boland, Patrick; Cohen, Steven J et al. (2014) Successful imatinib therapy for neuroendocrine carcinoma with activating Kit mutation: a case study. J Natl Compr Canc Netw 12:847-52
Gabitova, Linara; Gorin, Andrey; Astsaturov, Igor (2014) Molecular pathways: sterols and receptor signaling in cancer. Clin Cancer Res 20:28-34
Beeharry, Neil; Banina, Eugenia; Hittle, James et al. (2014) Re-purposing clinical kinase inhibitors to enhance chemosensitivity by overriding checkpoints. Cell Cycle 13:2172-91
Bagnyukova, T V; Restifo, D; Beeharry, N et al. (2013) DUSP6 regulates drug sensitivity by modulating DNA damage response. Br J Cancer 109:1063-71
Mehra, Ranee; Serebriiskii, Ilya G; Burtness, Barbara et al. (2013) Aurora kinases in head and neck cancer. Lancet Oncol 14:e425-35
Sukhanova, Anna; Gorin, Andrey; Serebriiskii, Ilya G et al. (2013) Targeting C4-demethylating genes in the cholesterol pathway sensitizes cancer cells to EGF receptor inhibitors via increased EGF receptor degradation. Cancer Discov 3:96-111

Showing the most recent 10 out of 12 publications