Micro RNAs (miRNAs) are short nucleotides (~ 20 nt) that act as regulators of gene expression in nearly all cellular processes including differentiatio, proliferation, and apoptosis. In tumors, miRNAs have been shown to play key roles in cancer processes such as metastasis and tumorigenesis. Since a single miRNA can regulate many mRNAs, dysregulation of one miRNA can have far-reaching biological consequences and that a small panel of miRNAs may suffice for diagnostic purposes. Recent discovery of the existence of circulating miRNAs in the blood stream further raises the potential of miRNAs as noninvasive biomarkers for remote cancer detection. In addition, due to their small size and protection within an exosomal shell, miRNAs robustly resist RNA degradation in tissue and blood. These features make miRNAs exciting targets for cancer diagnosis and prognosis. Since cell-free, circulating miRNAs exist at very low physiological concentrations, current methods to detect these targets predominantly rely on highly sensitive RT-qPCR. However, RT-qPCR is generally limited to single-plex analyses while clinical assessment of miRNAs requires that a panel (e.g.10-100) miRNAs to be quantified in a rapid and inexpensive manner. Employing a large number of separate PCRs for each sample is costly and requires large amounts of miRNA, which is difficult to obtain from blood samples. On the other hand, existing multiplexed technologies such as miRNA microarrays are woefully lacking in the requisite sensitivity to detect these circulating miRNA panels in body fluids. In this project, we propose to develop a single molecule length coding platform to address the unmet clinical need for highly sensitive and multiplexed detection of circulating miRNA. The platform employs a ligation- based molecular length coding scheme to generate miRNA-specific length-encoded strands that are deciphered by size separation to facilitate multiplexed detection. It utilizes cylindrical illumination confocal spectroscopy to quantify low concentration targets through single molecule counting, achieving high sensitivity and quantitative accuracy. In addition, a microfluidic device will be developed to simultaneously concentrate multiple microliter-sized samples into picoliter-sized plugs for arrayed separation in sub-micron channels to enhance both the resolution of separation and the throughput of analysis. Finally, we will validate the proposed platform by determining the analytical sensitivity and specificity using control serum samples spiked with synthetic miRNA sequences.
We aim to achieve PCR-equivalent sensitivity of <10-22 mole, specificity of >1000:1 for unrelated miRNA and >100:1 for related miRNA. Validation with clinical samples will be performed by analyzing a panel of 20 miRNAs in the serum of patients with advanced esophageal adenocarcinoma (20 samples) and healthy controls (20 samples) using d 200 mL of serum in a single reaction. The result will be compared to that obtained by RT-qPCR using 4 mL of serum split into 20 separate single-plex reactions.
The goal of the proposed project is to develop a single-molecule length-coding platform capable of highly sensitive and multiplexed analysis of panels of miRNAs in the blood stream, addressing the unmet clinical need of using circulating miRNAs as cancer biomarkers.
Showing the most recent 10 out of 20 publications